Step |
Hyp |
Ref |
Expression |
1 |
|
issdrg2.i |
|- I = ( invr ` R ) |
2 |
|
issdrg2.z |
|- .0. = ( 0g ` R ) |
3 |
|
issdrg |
|- ( S e. ( SubDRing ` R ) <-> ( R e. DivRing /\ S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) ) |
4 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
5 |
4 2 1
|
issubdrg |
|- ( ( R e. DivRing /\ S e. ( SubRing ` R ) ) -> ( ( R |`s S ) e. DivRing <-> A. x e. ( S \ { .0. } ) ( I ` x ) e. S ) ) |
6 |
5
|
pm5.32i |
|- ( ( ( R e. DivRing /\ S e. ( SubRing ` R ) ) /\ ( R |`s S ) e. DivRing ) <-> ( ( R e. DivRing /\ S e. ( SubRing ` R ) ) /\ A. x e. ( S \ { .0. } ) ( I ` x ) e. S ) ) |
7 |
|
df-3an |
|- ( ( R e. DivRing /\ S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) <-> ( ( R e. DivRing /\ S e. ( SubRing ` R ) ) /\ ( R |`s S ) e. DivRing ) ) |
8 |
|
df-3an |
|- ( ( R e. DivRing /\ S e. ( SubRing ` R ) /\ A. x e. ( S \ { .0. } ) ( I ` x ) e. S ) <-> ( ( R e. DivRing /\ S e. ( SubRing ` R ) ) /\ A. x e. ( S \ { .0. } ) ( I ` x ) e. S ) ) |
9 |
6 7 8
|
3bitr4i |
|- ( ( R e. DivRing /\ S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) <-> ( R e. DivRing /\ S e. ( SubRing ` R ) /\ A. x e. ( S \ { .0. } ) ( I ` x ) e. S ) ) |
10 |
3 9
|
bitri |
|- ( S e. ( SubDRing ` R ) <-> ( R e. DivRing /\ S e. ( SubRing ` R ) /\ A. x e. ( S \ { .0. } ) ( I ` x ) e. S ) ) |