Step |
Hyp |
Ref |
Expression |
1 |
|
riinrab |
⊢ ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
2 |
|
inss2 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 |
3 |
2
|
sseli |
⊢ ( 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑏 ∈ 𝑌 ) |
4 |
3
|
biantrud |
⊢ ( 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) → ( 𝑏 ∈ 𝑎 ↔ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ∈ 𝑌 ) ) ) |
5 |
|
vex |
⊢ 𝑏 ∈ V |
6 |
5
|
snss |
⊢ ( 𝑏 ∈ 𝑎 ↔ { 𝑏 } ⊆ 𝑎 ) |
7 |
6
|
bicomi |
⊢ ( { 𝑏 } ⊆ 𝑎 ↔ 𝑏 ∈ 𝑎 ) |
8 |
|
elin |
⊢ ( 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) ↔ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ∈ 𝑌 ) ) |
9 |
4 7 8
|
3bitr4g |
⊢ ( 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) → ( { 𝑏 } ⊆ 𝑎 ↔ 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) ) ) |
10 |
9
|
imbi1d |
⊢ ( 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) → ( ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ( 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) → 𝐸 ∈ 𝑎 ) ) ) |
11 |
10
|
ralbiia |
⊢ ( ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ( 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) → 𝐸 ∈ 𝑎 ) ) |
12 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) |
13 |
12
|
ssrind |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎 ∩ 𝑌 ) ⊆ ( 𝑋 ∩ 𝑌 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎 ∩ 𝑌 ) ⊆ ( 𝑋 ∩ 𝑌 ) ) |
15 |
|
ralss |
⊢ ( ( 𝑎 ∩ 𝑌 ) ⊆ ( 𝑋 ∩ 𝑌 ) → ( ∀ 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ( 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) → 𝐸 ∈ 𝑎 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ( 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) → 𝐸 ∈ 𝑎 ) ) ) |
17 |
11 16
|
bitr4id |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) 𝐸 ∈ 𝑎 ) ) |
18 |
17
|
rabbidva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) 𝐸 ∈ 𝑎 } ) |
19 |
1 18
|
eqtrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) 𝐸 ∈ 𝑎 } ) |
20 |
|
mreacs |
⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
22 |
|
ssralv |
⊢ ( ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 → ( ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) 𝐸 ∈ 𝑋 ) ) |
23 |
2 22
|
ax-mp |
⊢ ( ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) 𝐸 ∈ 𝑋 ) |
24 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐸 ∈ 𝑋 ) → 𝑋 ∈ 𝑉 ) |
25 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐸 ∈ 𝑋 ) → 𝐸 ∈ 𝑋 ) |
26 |
|
inss1 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 |
27 |
26
|
sseli |
⊢ ( 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑏 ∈ 𝑋 ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐸 ∈ 𝑋 ) → 𝑏 ∈ 𝑋 ) |
29 |
28
|
snssd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑏 } ⊆ 𝑋 ) |
30 |
|
snfi |
⊢ { 𝑏 } ∈ Fin |
31 |
30
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑏 } ∈ Fin ) |
32 |
|
acsfn |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋 ) ∧ ( { 𝑏 } ⊆ 𝑋 ∧ { 𝑏 } ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
33 |
24 25 29 31 32
|
syl22anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
35 |
34
|
ralimdva |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
36 |
23 35
|
syl5 |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
37 |
36
|
imp |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) → ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
38 |
|
mreriincl |
⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
39 |
21 37 38
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ ( 𝑋 ∩ 𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
40 |
19 39
|
eqeltrrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑎 ∩ 𝑌 ) 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |