Metamath Proof Explorer


Theorem acsfn1p

Description: Construction of a closure rule from a one-parameterpartial operation. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Assertion acsfn1p ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑎𝑌 ) 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 riinrab ( 𝒫 𝑋 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑋𝑌 ) ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) }
2 inss2 ( 𝑋𝑌 ) ⊆ 𝑌
3 2 sseli ( 𝑏 ∈ ( 𝑋𝑌 ) → 𝑏𝑌 )
4 3 biantrud ( 𝑏 ∈ ( 𝑋𝑌 ) → ( 𝑏𝑎 ↔ ( 𝑏𝑎𝑏𝑌 ) ) )
5 vex 𝑏 ∈ V
6 5 snss ( 𝑏𝑎 ↔ { 𝑏 } ⊆ 𝑎 )
7 6 bicomi ( { 𝑏 } ⊆ 𝑎𝑏𝑎 )
8 elin ( 𝑏 ∈ ( 𝑎𝑌 ) ↔ ( 𝑏𝑎𝑏𝑌 ) )
9 4 7 8 3bitr4g ( 𝑏 ∈ ( 𝑋𝑌 ) → ( { 𝑏 } ⊆ 𝑎𝑏 ∈ ( 𝑎𝑌 ) ) )
10 9 imbi1d ( 𝑏 ∈ ( 𝑋𝑌 ) → ( ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) ↔ ( 𝑏 ∈ ( 𝑎𝑌 ) → 𝐸𝑎 ) ) )
11 10 ralbiia ( ∀ 𝑏 ∈ ( 𝑋𝑌 ) ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) ↔ ∀ 𝑏 ∈ ( 𝑋𝑌 ) ( 𝑏 ∈ ( 𝑎𝑌 ) → 𝐸𝑎 ) )
12 elpwi ( 𝑎 ∈ 𝒫 𝑋𝑎𝑋 )
13 12 ssrind ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎𝑌 ) ⊆ ( 𝑋𝑌 ) )
14 13 adantl ( ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎𝑌 ) ⊆ ( 𝑋𝑌 ) )
15 ralss ( ( 𝑎𝑌 ) ⊆ ( 𝑋𝑌 ) → ( ∀ 𝑏 ∈ ( 𝑎𝑌 ) 𝐸𝑎 ↔ ∀ 𝑏 ∈ ( 𝑋𝑌 ) ( 𝑏 ∈ ( 𝑎𝑌 ) → 𝐸𝑎 ) ) )
16 14 15 syl ( ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑏 ∈ ( 𝑎𝑌 ) 𝐸𝑎 ↔ ∀ 𝑏 ∈ ( 𝑋𝑌 ) ( 𝑏 ∈ ( 𝑎𝑌 ) → 𝐸𝑎 ) ) )
17 11 16 bitr4id ( ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑏 ∈ ( 𝑋𝑌 ) ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) ↔ ∀ 𝑏 ∈ ( 𝑎𝑌 ) 𝐸𝑎 ) )
18 17 rabbidva ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑋𝑌 ) ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑎𝑌 ) 𝐸𝑎 } )
19 1 18 eqtrid ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) → ( 𝒫 𝑋 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑎𝑌 ) 𝐸𝑎 } )
20 mreacs ( 𝑋𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) )
21 20 adantr ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) )
22 ssralv ( ( 𝑋𝑌 ) ⊆ 𝑌 → ( ∀ 𝑏𝑌 𝐸𝑋 → ∀ 𝑏 ∈ ( 𝑋𝑌 ) 𝐸𝑋 ) )
23 2 22 ax-mp ( ∀ 𝑏𝑌 𝐸𝑋 → ∀ 𝑏 ∈ ( 𝑋𝑌 ) 𝐸𝑋 )
24 simpll ( ( ( 𝑋𝑉𝑏 ∈ ( 𝑋𝑌 ) ) ∧ 𝐸𝑋 ) → 𝑋𝑉 )
25 simpr ( ( ( 𝑋𝑉𝑏 ∈ ( 𝑋𝑌 ) ) ∧ 𝐸𝑋 ) → 𝐸𝑋 )
26 inss1 ( 𝑋𝑌 ) ⊆ 𝑋
27 26 sseli ( 𝑏 ∈ ( 𝑋𝑌 ) → 𝑏𝑋 )
28 27 ad2antlr ( ( ( 𝑋𝑉𝑏 ∈ ( 𝑋𝑌 ) ) ∧ 𝐸𝑋 ) → 𝑏𝑋 )
29 28 snssd ( ( ( 𝑋𝑉𝑏 ∈ ( 𝑋𝑌 ) ) ∧ 𝐸𝑋 ) → { 𝑏 } ⊆ 𝑋 )
30 snfi { 𝑏 } ∈ Fin
31 30 a1i ( ( ( 𝑋𝑉𝑏 ∈ ( 𝑋𝑌 ) ) ∧ 𝐸𝑋 ) → { 𝑏 } ∈ Fin )
32 acsfn ( ( ( 𝑋𝑉𝐸𝑋 ) ∧ ( { 𝑏 } ⊆ 𝑋 ∧ { 𝑏 } ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) )
33 24 25 29 31 32 syl22anc ( ( ( 𝑋𝑉𝑏 ∈ ( 𝑋𝑌 ) ) ∧ 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) )
34 33 ex ( ( 𝑋𝑉𝑏 ∈ ( 𝑋𝑌 ) ) → ( 𝐸𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) )
35 34 ralimdva ( 𝑋𝑉 → ( ∀ 𝑏 ∈ ( 𝑋𝑌 ) 𝐸𝑋 → ∀ 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) )
36 23 35 syl5 ( 𝑋𝑉 → ( ∀ 𝑏𝑌 𝐸𝑋 → ∀ 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) )
37 36 imp ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) → ∀ 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) )
38 mreriincl ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) )
39 21 37 38 syl2anc ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) → ( 𝒫 𝑋 𝑏 ∈ ( 𝑋𝑌 ) { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) )
40 19 39 eqeltrrd ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑌 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ ( 𝑎𝑌 ) 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )