Step |
Hyp |
Ref |
Expression |
1 |
|
subrgacs.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
3 |
2
|
issubrg3 |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑥 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) |
4 |
|
elin |
⊢ ( 𝑥 ∈ ( ( SubGrp ‘ 𝑅 ) ∩ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑥 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) ) |
5 |
3 4
|
bitr4di |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝑥 ∈ ( ( SubGrp ‘ 𝑅 ) ∩ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) |
6 |
5
|
eqrdv |
⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) = ( ( SubGrp ‘ 𝑅 ) ∩ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) ) |
7 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
8 |
|
mreacs |
⊢ ( 𝐵 ∈ V → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
9 |
7 8
|
mp1i |
⊢ ( 𝑅 ∈ Ring → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
10 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
11 |
1
|
subgacs |
⊢ ( 𝑅 ∈ Grp → ( SubGrp ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑅 ∈ Ring → ( SubGrp ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ) |
13 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
14 |
2 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
15 |
14
|
submacs |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
16 |
13 15
|
syl |
⊢ ( 𝑅 ∈ Ring → ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
17 |
|
mreincl |
⊢ ( ( ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ∧ ( SubGrp ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ∧ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ACS ‘ 𝐵 ) ) → ( ( SubGrp ‘ 𝑅 ) ∩ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) ∈ ( ACS ‘ 𝐵 ) ) |
18 |
9 12 16 17
|
syl3anc |
⊢ ( 𝑅 ∈ Ring → ( ( SubGrp ‘ 𝑅 ) ∩ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) ∈ ( ACS ‘ 𝐵 ) ) |
19 |
6 18
|
eqeltrd |
⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ) |