Step |
Hyp |
Ref |
Expression |
1 |
|
subrgacs.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
4 |
2 3
|
issdrg2 |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
5 |
|
3anass |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ↔ ( 𝑅 ∈ DivRing ∧ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
6 |
4 5
|
bitri |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
7 |
6
|
baib |
⊢ ( 𝑅 ∈ DivRing → ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
8 |
1
|
subrgss |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) → 𝑠 ⊆ 𝐵 ) |
9 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵 ) |
10 |
8 9
|
sylibr |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) → 𝑠 ∈ 𝒫 𝐵 ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
12 |
|
iftrue |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) |
13 |
12
|
eleq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
14 |
13
|
biimprd |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑥 ∈ 𝑦 → if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ) ) |
15 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
16 |
15
|
necon2bi |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ¬ 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
17 |
16
|
pm2.21d |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ) ) |
18 |
14 17
|
2thd |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( ( 𝑥 ∈ 𝑦 → if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ) ↔ ( 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ) ) ) |
19 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) ) |
20 |
19
|
rbaibr |
⊢ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
21 |
|
ifnefalse |
⊢ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → ( if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ↔ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ) ) |
23 |
20 22
|
imbi12d |
⊢ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → ( ( 𝑥 ∈ 𝑦 → if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ) ↔ ( 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ) ) ) |
24 |
18 23
|
pm2.61ine |
⊢ ( ( 𝑥 ∈ 𝑦 → if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ) ↔ ( 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ) ) |
25 |
24
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ) |
26 |
|
difeq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) = ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
27 |
|
eleq2w |
⊢ ( 𝑦 = 𝑠 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ↔ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
28 |
26 27
|
raleqbidv |
⊢ ( 𝑦 = 𝑠 → ( ∀ 𝑥 ∈ ( 𝑦 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
29 |
25 28
|
syl5bb |
⊢ ( 𝑦 = 𝑠 → ( ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
30 |
29
|
elrab3 |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ↔ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
31 |
11 30
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ↔ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) |
32 |
31
|
pm5.32da |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ↔ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝑅 ) } ) ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
33 |
7 32
|
bitr4d |
⊢ ( 𝑅 ∈ DivRing → ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ) ) |
34 |
|
elin |
⊢ ( 𝑠 ∈ ( ( SubRing ‘ 𝑅 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ↔ ( 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑠 ∈ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ) |
35 |
33 34
|
bitr4di |
⊢ ( 𝑅 ∈ DivRing → ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ 𝑠 ∈ ( ( SubRing ‘ 𝑅 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ) ) |
36 |
35
|
eqrdv |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) = ( ( SubRing ‘ 𝑅 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ) |
37 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
38 |
|
mreacs |
⊢ ( 𝐵 ∈ V → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
39 |
37 38
|
mp1i |
⊢ ( 𝑅 ∈ DivRing → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
40 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
41 |
1
|
subrgacs |
⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ) |
42 |
40 41
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( SubRing ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ) |
43 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝐵 ) |
44 |
|
df-ne |
⊢ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ↔ ¬ 𝑥 = ( 0g ‘ 𝑅 ) ) |
45 |
1 3 2
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
46 |
45
|
3expa |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
47 |
44 46
|
sylan2br |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐵 ) |
48 |
43 47
|
ifclda |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
49 |
48
|
ralrimiva |
⊢ ( 𝑅 ∈ DivRing → ∀ 𝑥 ∈ 𝐵 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝐵 ) |
50 |
|
acsfn1 |
⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝐵 ) → { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ∈ ( ACS ‘ 𝐵 ) ) |
51 |
37 49 50
|
sylancr |
⊢ ( 𝑅 ∈ DivRing → { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ∈ ( ACS ‘ 𝐵 ) ) |
52 |
|
mreincl |
⊢ ( ( ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ∧ ( SubRing ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ∧ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ∈ ( ACS ‘ 𝐵 ) ) → ( ( SubRing ‘ 𝑅 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ∈ ( ACS ‘ 𝐵 ) ) |
53 |
39 42 51 52
|
syl3anc |
⊢ ( 𝑅 ∈ DivRing → ( ( SubRing ‘ 𝑅 ) ∩ { 𝑦 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑦 if ( 𝑥 = ( 0g ‘ 𝑅 ) , 𝑥 , ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ 𝑦 } ) ∈ ( ACS ‘ 𝐵 ) ) |
54 |
36 53
|
eqeltrd |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ∈ ( ACS ‘ 𝐵 ) ) |