| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgacs.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 3 | 2 | issubrg3 |  |-  ( R e. Ring -> ( x e. ( SubRing ` R ) <-> ( x e. ( SubGrp ` R ) /\ x e. ( SubMnd ` ( mulGrp ` R ) ) ) ) ) | 
						
							| 4 |  | elin |  |-  ( x e. ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) <-> ( x e. ( SubGrp ` R ) /\ x e. ( SubMnd ` ( mulGrp ` R ) ) ) ) | 
						
							| 5 | 3 4 | bitr4di |  |-  ( R e. Ring -> ( x e. ( SubRing ` R ) <-> x e. ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) ) ) | 
						
							| 6 | 5 | eqrdv |  |-  ( R e. Ring -> ( SubRing ` R ) = ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) ) | 
						
							| 7 | 1 | fvexi |  |-  B e. _V | 
						
							| 8 |  | mreacs |  |-  ( B e. _V -> ( ACS ` B ) e. ( Moore ` ~P B ) ) | 
						
							| 9 | 7 8 | mp1i |  |-  ( R e. Ring -> ( ACS ` B ) e. ( Moore ` ~P B ) ) | 
						
							| 10 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 11 | 1 | subgacs |  |-  ( R e. Grp -> ( SubGrp ` R ) e. ( ACS ` B ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( R e. Ring -> ( SubGrp ` R ) e. ( ACS ` B ) ) | 
						
							| 13 | 2 | ringmgp |  |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 14 | 2 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 15 | 14 | submacs |  |-  ( ( mulGrp ` R ) e. Mnd -> ( SubMnd ` ( mulGrp ` R ) ) e. ( ACS ` B ) ) | 
						
							| 16 | 13 15 | syl |  |-  ( R e. Ring -> ( SubMnd ` ( mulGrp ` R ) ) e. ( ACS ` B ) ) | 
						
							| 17 |  | mreincl |  |-  ( ( ( ACS ` B ) e. ( Moore ` ~P B ) /\ ( SubGrp ` R ) e. ( ACS ` B ) /\ ( SubMnd ` ( mulGrp ` R ) ) e. ( ACS ` B ) ) -> ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) e. ( ACS ` B ) ) | 
						
							| 18 | 9 12 16 17 | syl3anc |  |-  ( R e. Ring -> ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) e. ( ACS ` B ) ) | 
						
							| 19 | 6 18 | eqeltrd |  |-  ( R e. Ring -> ( SubRing ` R ) e. ( ACS ` B ) ) |