| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgacs.b |
|- B = ( Base ` R ) |
| 2 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 3 |
2
|
issubrg3 |
|- ( R e. Ring -> ( x e. ( SubRing ` R ) <-> ( x e. ( SubGrp ` R ) /\ x e. ( SubMnd ` ( mulGrp ` R ) ) ) ) ) |
| 4 |
|
elin |
|- ( x e. ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) <-> ( x e. ( SubGrp ` R ) /\ x e. ( SubMnd ` ( mulGrp ` R ) ) ) ) |
| 5 |
3 4
|
bitr4di |
|- ( R e. Ring -> ( x e. ( SubRing ` R ) <-> x e. ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) ) ) |
| 6 |
5
|
eqrdv |
|- ( R e. Ring -> ( SubRing ` R ) = ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) ) |
| 7 |
1
|
fvexi |
|- B e. _V |
| 8 |
|
mreacs |
|- ( B e. _V -> ( ACS ` B ) e. ( Moore ` ~P B ) ) |
| 9 |
7 8
|
mp1i |
|- ( R e. Ring -> ( ACS ` B ) e. ( Moore ` ~P B ) ) |
| 10 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 11 |
1
|
subgacs |
|- ( R e. Grp -> ( SubGrp ` R ) e. ( ACS ` B ) ) |
| 12 |
10 11
|
syl |
|- ( R e. Ring -> ( SubGrp ` R ) e. ( ACS ` B ) ) |
| 13 |
2
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 14 |
2 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 15 |
14
|
submacs |
|- ( ( mulGrp ` R ) e. Mnd -> ( SubMnd ` ( mulGrp ` R ) ) e. ( ACS ` B ) ) |
| 16 |
13 15
|
syl |
|- ( R e. Ring -> ( SubMnd ` ( mulGrp ` R ) ) e. ( ACS ` B ) ) |
| 17 |
|
mreincl |
|- ( ( ( ACS ` B ) e. ( Moore ` ~P B ) /\ ( SubGrp ` R ) e. ( ACS ` B ) /\ ( SubMnd ` ( mulGrp ` R ) ) e. ( ACS ` B ) ) -> ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) e. ( ACS ` B ) ) |
| 18 |
9 12 16 17
|
syl3anc |
|- ( R e. Ring -> ( ( SubGrp ` R ) i^i ( SubMnd ` ( mulGrp ` R ) ) ) e. ( ACS ` B ) ) |
| 19 |
6 18
|
eqeltrd |
|- ( R e. Ring -> ( SubRing ` R ) e. ( ACS ` B ) ) |