Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = X -> ( ACS ` x ) = ( ACS ` X ) ) |
2 |
|
pweq |
|- ( x = X -> ~P x = ~P X ) |
3 |
2
|
fveq2d |
|- ( x = X -> ( Moore ` ~P x ) = ( Moore ` ~P X ) ) |
4 |
1 3
|
eleq12d |
|- ( x = X -> ( ( ACS ` x ) e. ( Moore ` ~P x ) <-> ( ACS ` X ) e. ( Moore ` ~P X ) ) ) |
5 |
|
acsmre |
|- ( a e. ( ACS ` x ) -> a e. ( Moore ` x ) ) |
6 |
|
mresspw |
|- ( a e. ( Moore ` x ) -> a C_ ~P x ) |
7 |
5 6
|
syl |
|- ( a e. ( ACS ` x ) -> a C_ ~P x ) |
8 |
5 7
|
elpwd |
|- ( a e. ( ACS ` x ) -> a e. ~P ~P x ) |
9 |
8
|
ssriv |
|- ( ACS ` x ) C_ ~P ~P x |
10 |
9
|
a1i |
|- ( T. -> ( ACS ` x ) C_ ~P ~P x ) |
11 |
|
vex |
|- x e. _V |
12 |
|
mremre |
|- ( x e. _V -> ( Moore ` x ) e. ( Moore ` ~P x ) ) |
13 |
11 12
|
mp1i |
|- ( a C_ ( ACS ` x ) -> ( Moore ` x ) e. ( Moore ` ~P x ) ) |
14 |
5
|
ssriv |
|- ( ACS ` x ) C_ ( Moore ` x ) |
15 |
|
sstr |
|- ( ( a C_ ( ACS ` x ) /\ ( ACS ` x ) C_ ( Moore ` x ) ) -> a C_ ( Moore ` x ) ) |
16 |
14 15
|
mpan2 |
|- ( a C_ ( ACS ` x ) -> a C_ ( Moore ` x ) ) |
17 |
|
mrerintcl |
|- ( ( ( Moore ` x ) e. ( Moore ` ~P x ) /\ a C_ ( Moore ` x ) ) -> ( ~P x i^i |^| a ) e. ( Moore ` x ) ) |
18 |
13 16 17
|
syl2anc |
|- ( a C_ ( ACS ` x ) -> ( ~P x i^i |^| a ) e. ( Moore ` x ) ) |
19 |
|
ssel2 |
|- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> d e. ( ACS ` x ) ) |
20 |
19
|
acsmred |
|- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> d e. ( Moore ` x ) ) |
21 |
|
eqid |
|- ( mrCls ` d ) = ( mrCls ` d ) |
22 |
20 21
|
mrcssvd |
|- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> ( ( mrCls ` d ) ` c ) C_ x ) |
23 |
22
|
ralrimiva |
|- ( a C_ ( ACS ` x ) -> A. d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
24 |
23
|
adantr |
|- ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> A. d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
25 |
|
iunss |
|- ( U_ d e. a ( ( mrCls ` d ) ` c ) C_ x <-> A. d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
26 |
24 25
|
sylibr |
|- ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> U_ d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
27 |
11
|
elpw2 |
|- ( U_ d e. a ( ( mrCls ` d ) ` c ) e. ~P x <-> U_ d e. a ( ( mrCls ` d ) ` c ) C_ x ) |
28 |
26 27
|
sylibr |
|- ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> U_ d e. a ( ( mrCls ` d ) ` c ) e. ~P x ) |
29 |
28
|
fmpttd |
|- ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x ) |
30 |
|
fssxp |
|- ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) ) |
31 |
29 30
|
syl |
|- ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) ) |
32 |
|
vpwex |
|- ~P x e. _V |
33 |
32 32
|
xpex |
|- ( ~P x X. ~P x ) e. _V |
34 |
|
ssexg |
|- ( ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) /\ ( ~P x X. ~P x ) e. _V ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) e. _V ) |
35 |
31 33 34
|
sylancl |
|- ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) e. _V ) |
36 |
19
|
adantlr |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> d e. ( ACS ` x ) ) |
37 |
|
elpwi |
|- ( b e. ~P x -> b C_ x ) |
38 |
37
|
ad2antlr |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> b C_ x ) |
39 |
21
|
acsfiel2 |
|- ( ( d e. ( ACS ` x ) /\ b C_ x ) -> ( b e. d <-> A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) ) |
40 |
36 38 39
|
syl2anc |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> ( b e. d <-> A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) ) |
41 |
40
|
ralbidva |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. d e. a b e. d <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) ) |
42 |
|
iunss |
|- ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a ( ( mrCls ` d ) ` e ) C_ b ) |
43 |
42
|
ralbii |
|- ( A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) A. d e. a ( ( mrCls ` d ) ` e ) C_ b ) |
44 |
|
ralcom |
|- ( A. e e. ( ~P b i^i Fin ) A. d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) |
45 |
43 44
|
bitri |
|- ( A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) |
46 |
41 45
|
bitr4di |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. d e. a b e. d <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
47 |
|
elrint2 |
|- ( b e. ~P x -> ( b e. ( ~P x i^i |^| a ) <-> A. d e. a b e. d ) ) |
48 |
47
|
adantl |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( b e. ( ~P x i^i |^| a ) <-> A. d e. a b e. d ) ) |
49 |
|
funmpt |
|- Fun ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) |
50 |
|
funiunfv |
|- ( Fun ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) ) |
51 |
49 50
|
ax-mp |
|- U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) |
52 |
51
|
sseq1i |
|- ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) |
53 |
|
iunss |
|- ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b ) |
54 |
|
eqid |
|- ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) |
55 |
|
fveq2 |
|- ( c = e -> ( ( mrCls ` d ) ` c ) = ( ( mrCls ` d ) ` e ) ) |
56 |
55
|
iuneq2d |
|- ( c = e -> U_ d e. a ( ( mrCls ` d ) ` c ) = U_ d e. a ( ( mrCls ` d ) ` e ) ) |
57 |
|
inss1 |
|- ( ~P b i^i Fin ) C_ ~P b |
58 |
37
|
sspwd |
|- ( b e. ~P x -> ~P b C_ ~P x ) |
59 |
58
|
adantl |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ~P b C_ ~P x ) |
60 |
57 59
|
sstrid |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( ~P b i^i Fin ) C_ ~P x ) |
61 |
60
|
sselda |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> e e. ~P x ) |
62 |
20 21
|
mrcssvd |
|- ( ( a C_ ( ACS ` x ) /\ d e. a ) -> ( ( mrCls ` d ) ` e ) C_ x ) |
63 |
62
|
ralrimiva |
|- ( a C_ ( ACS ` x ) -> A. d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
64 |
63
|
ad2antrr |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> A. d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
65 |
|
iunss |
|- ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ x <-> A. d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
66 |
64 65
|
sylibr |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> U_ d e. a ( ( mrCls ` d ) ` e ) C_ x ) |
67 |
|
ssexg |
|- ( ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ x /\ x e. _V ) -> U_ d e. a ( ( mrCls ` d ) ` e ) e. _V ) |
68 |
66 11 67
|
sylancl |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> U_ d e. a ( ( mrCls ` d ) ` e ) e. _V ) |
69 |
54 56 61 68
|
fvmptd3 |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U_ d e. a ( ( mrCls ` d ) ` e ) ) |
70 |
69
|
sseq1d |
|- ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> ( ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
71 |
70
|
ralbidva |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
72 |
53 71
|
syl5bb |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
73 |
52 72
|
bitr3id |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) ) |
74 |
46 48 73
|
3bitr4d |
|- ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) |
75 |
74
|
ralrimiva |
|- ( a C_ ( ACS ` x ) -> A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) |
76 |
29 75
|
jca |
|- ( a C_ ( ACS ` x ) -> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) |
77 |
|
feq1 |
|- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( f : ~P x --> ~P x <-> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x ) ) |
78 |
|
imaeq1 |
|- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( f " ( ~P b i^i Fin ) ) = ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) ) |
79 |
78
|
unieqd |
|- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> U. ( f " ( ~P b i^i Fin ) ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) ) |
80 |
79
|
sseq1d |
|- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( U. ( f " ( ~P b i^i Fin ) ) C_ b <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) |
81 |
80
|
bibi2d |
|- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) <-> ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) |
82 |
81
|
ralbidv |
|- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) <-> A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) |
83 |
77 82
|
anbi12d |
|- ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) <-> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) ) |
84 |
35 76 83
|
spcedv |
|- ( a C_ ( ACS ` x ) -> E. f ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) ) |
85 |
|
isacs |
|- ( ( ~P x i^i |^| a ) e. ( ACS ` x ) <-> ( ( ~P x i^i |^| a ) e. ( Moore ` x ) /\ E. f ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) ) ) |
86 |
18 84 85
|
sylanbrc |
|- ( a C_ ( ACS ` x ) -> ( ~P x i^i |^| a ) e. ( ACS ` x ) ) |
87 |
86
|
adantl |
|- ( ( T. /\ a C_ ( ACS ` x ) ) -> ( ~P x i^i |^| a ) e. ( ACS ` x ) ) |
88 |
10 87
|
ismred2 |
|- ( T. -> ( ACS ` x ) e. ( Moore ` ~P x ) ) |
89 |
88
|
mptru |
|- ( ACS ` x ) e. ( Moore ` ~P x ) |
90 |
4 89
|
vtoclg |
|- ( X e. V -> ( ACS ` X ) e. ( Moore ` ~P X ) ) |