| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riin0 |
⊢ ( 𝐼 = ∅ → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = 𝑋 ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = 𝑋 ) |
| 3 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → 𝑋 ∈ 𝐶 ) |
| 5 |
2 4
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |
| 6 |
|
mress |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ⊆ 𝑋 ) |
| 7 |
6
|
ex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋 ) ) |
| 8 |
7
|
ralimdv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ) ) |
| 9 |
8
|
imp |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ) |
| 10 |
|
riinn0 |
⊢ ( ( ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = ∩ 𝑦 ∈ 𝐼 𝑆 ) |
| 11 |
9 10
|
sylan |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = ∩ 𝑦 ∈ 𝐼 𝑆 ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → 𝐼 ≠ ∅ ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
| 15 |
|
mreiincl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
| 16 |
12 13 14 15
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
| 17 |
11 16
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |
| 18 |
5 17
|
pm2.61dane |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |