Metamath Proof Explorer


Theorem subgcld

Description: A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses subgcld.1 + = ( +g𝐺 )
subgcld.2 ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
subgcld.3 ( 𝜑𝑋𝑆 )
subgcld.4 ( 𝜑𝑌𝑆 )
Assertion subgcld ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 subgcld.1 + = ( +g𝐺 )
2 subgcld.2 ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
3 subgcld.3 ( 𝜑𝑋𝑆 )
4 subgcld.4 ( 𝜑𝑌𝑆 )
5 1 subgcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
6 2 3 4 5 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑆 )