Metamath Proof Explorer


Theorem subgcld

Description: A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses subgcld.1 + ˙ = + G
subgcld.2 φ S SubGrp G
subgcld.3 φ X S
subgcld.4 φ Y S
Assertion subgcld φ X + ˙ Y S

Proof

Step Hyp Ref Expression
1 subgcld.1 + ˙ = + G
2 subgcld.2 φ S SubGrp G
3 subgcld.3 φ X S
4 subgcld.4 φ Y S
5 1 subgcl S SubGrp G X S Y S X + ˙ Y S
6 2 3 4 5 syl3anc φ X + ˙ Y S