Metamath Proof Explorer


Theorem subgcld

Description: A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses subgcld.1
|- .+ = ( +g ` G )
subgcld.2
|- ( ph -> S e. ( SubGrp ` G ) )
subgcld.3
|- ( ph -> X e. S )
subgcld.4
|- ( ph -> Y e. S )
Assertion subgcld
|- ( ph -> ( X .+ Y ) e. S )

Proof

Step Hyp Ref Expression
1 subgcld.1
 |-  .+ = ( +g ` G )
2 subgcld.2
 |-  ( ph -> S e. ( SubGrp ` G ) )
3 subgcld.3
 |-  ( ph -> X e. S )
4 subgcld.4
 |-  ( ph -> Y e. S )
5 1 subgcl
 |-  ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S )
6 2 3 4 5 syl3anc
 |-  ( ph -> ( X .+ Y ) e. S )