Description: A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgcld.1 | |- .+ = ( +g ` G ) |
|
| subgcld.2 | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| subgcld.3 | |- ( ph -> X e. S ) |
||
| subgcld.4 | |- ( ph -> Y e. S ) |
||
| Assertion | subgcld | |- ( ph -> ( X .+ Y ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgcld.1 | |- .+ = ( +g ` G ) |
|
| 2 | subgcld.2 | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | subgcld.3 | |- ( ph -> X e. S ) |
|
| 4 | subgcld.4 | |- ( ph -> Y e. S ) |
|
| 5 | 1 | subgcl | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |
| 6 | 2 3 4 5 | syl3anc | |- ( ph -> ( X .+ Y ) e. S ) |