Description: A subgroup is closed under group subtraction. (Contributed by Thierry Arnoux, 6-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgsubcld.m | |- .- = ( -g ` G ) |
|
| subgsubcld.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| subgsubcld.x | |- ( ph -> X e. S ) |
||
| subgsubcld.y | |- ( ph -> Y e. S ) |
||
| Assertion | subgsubcld | |- ( ph -> ( X .- Y ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgsubcld.m | |- .- = ( -g ` G ) |
|
| 2 | subgsubcld.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | subgsubcld.x | |- ( ph -> X e. S ) |
|
| 4 | subgsubcld.y | |- ( ph -> Y e. S ) |
|
| 5 | 1 | subgsubcl | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) e. S ) |
| 6 | 2 3 4 5 | syl3anc | |- ( ph -> ( X .- Y ) e. S ) |