Description: A subgroup is closed under group subtraction. (Contributed by Thierry Arnoux, 6-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgsubcld.m | |- .- = ( -g ` G ) |
|
subgsubcld.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
subgsubcld.x | |- ( ph -> X e. S ) |
||
subgsubcld.y | |- ( ph -> Y e. S ) |
||
Assertion | subgsubcld | |- ( ph -> ( X .- Y ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgsubcld.m | |- .- = ( -g ` G ) |
|
2 | subgsubcld.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
3 | subgsubcld.x | |- ( ph -> X e. S ) |
|
4 | subgsubcld.y | |- ( ph -> Y e. S ) |
|
5 | 1 | subgsubcl | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) e. S ) |
6 | 2 3 4 5 | syl3anc | |- ( ph -> ( X .- Y ) e. S ) |