Metamath Proof Explorer


Theorem subgmulgcld

Description: Closure of the group multiple within a subgroup. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses subgmulgcld.b
|- B = ( Base ` R )
subgmulgcld.x
|- .x. = ( .g ` R )
subgmulgcld.r
|- ( ph -> R e. Grp )
subgmulgcld.a
|- ( ph -> A e. S )
subgmulgcld.s
|- ( ph -> S e. ( SubGrp ` R ) )
subgmulgcld.z
|- ( ph -> Z e. ZZ )
Assertion subgmulgcld
|- ( ph -> ( Z .x. A ) e. S )

Proof

Step Hyp Ref Expression
1 subgmulgcld.b
 |-  B = ( Base ` R )
2 subgmulgcld.x
 |-  .x. = ( .g ` R )
3 subgmulgcld.r
 |-  ( ph -> R e. Grp )
4 subgmulgcld.a
 |-  ( ph -> A e. S )
5 subgmulgcld.s
 |-  ( ph -> S e. ( SubGrp ` R ) )
6 subgmulgcld.z
 |-  ( ph -> Z e. ZZ )
7 eqid
 |-  ( Base ` ( R |`s S ) ) = ( Base ` ( R |`s S ) )
8 eqid
 |-  ( .g ` ( R |`s S ) ) = ( .g ` ( R |`s S ) )
9 eqid
 |-  ( R |`s S ) = ( R |`s S )
10 9 subggrp
 |-  ( S e. ( SubGrp ` R ) -> ( R |`s S ) e. Grp )
11 5 10 syl
 |-  ( ph -> ( R |`s S ) e. Grp )
12 1 subgss
 |-  ( S e. ( SubGrp ` R ) -> S C_ B )
13 9 1 ressbas2
 |-  ( S C_ B -> S = ( Base ` ( R |`s S ) ) )
14 5 12 13 3syl
 |-  ( ph -> S = ( Base ` ( R |`s S ) ) )
15 4 14 eleqtrd
 |-  ( ph -> A e. ( Base ` ( R |`s S ) ) )
16 7 8 11 6 15 mulgcld
 |-  ( ph -> ( Z ( .g ` ( R |`s S ) ) A ) e. ( Base ` ( R |`s S ) ) )
17 2 9 8 subgmulg
 |-  ( ( S e. ( SubGrp ` R ) /\ Z e. ZZ /\ A e. S ) -> ( Z .x. A ) = ( Z ( .g ` ( R |`s S ) ) A ) )
18 5 6 4 17 syl3anc
 |-  ( ph -> ( Z .x. A ) = ( Z ( .g ` ( R |`s S ) ) A ) )
19 16 18 14 3eltr4d
 |-  ( ph -> ( Z .x. A ) e. S )