Step |
Hyp |
Ref |
Expression |
1 |
|
subgmulgcld.b |
|- B = ( Base ` R ) |
2 |
|
subgmulgcld.x |
|- .x. = ( .g ` R ) |
3 |
|
subgmulgcld.r |
|- ( ph -> R e. Grp ) |
4 |
|
subgmulgcld.a |
|- ( ph -> A e. S ) |
5 |
|
subgmulgcld.s |
|- ( ph -> S e. ( SubGrp ` R ) ) |
6 |
|
subgmulgcld.z |
|- ( ph -> Z e. ZZ ) |
7 |
|
eqid |
|- ( Base ` ( R |`s S ) ) = ( Base ` ( R |`s S ) ) |
8 |
|
eqid |
|- ( .g ` ( R |`s S ) ) = ( .g ` ( R |`s S ) ) |
9 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
10 |
9
|
subggrp |
|- ( S e. ( SubGrp ` R ) -> ( R |`s S ) e. Grp ) |
11 |
5 10
|
syl |
|- ( ph -> ( R |`s S ) e. Grp ) |
12 |
1
|
subgss |
|- ( S e. ( SubGrp ` R ) -> S C_ B ) |
13 |
9 1
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` ( R |`s S ) ) ) |
14 |
5 12 13
|
3syl |
|- ( ph -> S = ( Base ` ( R |`s S ) ) ) |
15 |
4 14
|
eleqtrd |
|- ( ph -> A e. ( Base ` ( R |`s S ) ) ) |
16 |
7 8 11 6 15
|
mulgcld |
|- ( ph -> ( Z ( .g ` ( R |`s S ) ) A ) e. ( Base ` ( R |`s S ) ) ) |
17 |
2 9 8
|
subgmulg |
|- ( ( S e. ( SubGrp ` R ) /\ Z e. ZZ /\ A e. S ) -> ( Z .x. A ) = ( Z ( .g ` ( R |`s S ) ) A ) ) |
18 |
5 6 4 17
|
syl3anc |
|- ( ph -> ( Z .x. A ) = ( Z ( .g ` ( R |`s S ) ) A ) ) |
19 |
16 18 14
|
3eltr4d |
|- ( ph -> ( Z .x. A ) e. S ) |