Metamath Proof Explorer
Description: A subgroup is closed under group subtraction. (Contributed by Thierry
Arnoux, 6-Jul-2025)
|
|
Ref |
Expression |
|
Hypotheses |
subgsubcld.m |
⊢ − = ( -g ‘ 𝐺 ) |
|
|
subgsubcld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
|
|
subgsubcld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
|
|
subgsubcld.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
|
Assertion |
subgsubcld |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
subgsubcld.m |
⊢ − = ( -g ‘ 𝐺 ) |
2 |
|
subgsubcld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
subgsubcld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
4 |
|
subgsubcld.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
5 |
1
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) ∈ 𝑆 ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑆 ) |