Metamath Proof Explorer


Theorem subgsubcld

Description: A subgroup is closed under group subtraction. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses subgsubcld.m - ˙ = - G
subgsubcld.s φ S SubGrp G
subgsubcld.x φ X S
subgsubcld.y φ Y S
Assertion subgsubcld φ X - ˙ Y S

Proof

Step Hyp Ref Expression
1 subgsubcld.m - ˙ = - G
2 subgsubcld.s φ S SubGrp G
3 subgsubcld.x φ X S
4 subgsubcld.y φ Y S
5 1 subgsubcl S SubGrp G X S Y S X - ˙ Y S
6 2 3 4 5 syl3anc φ X - ˙ Y S