| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdrgdvcl.i |
⊢ / = ( /r ‘ 𝑅 ) |
| 2 |
|
sdrgdvcl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
sdrgdvcl.a |
⊢ ( 𝜑 → 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ) |
| 4 |
|
sdrgdvcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 5 |
|
sdrgdvcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 6 |
|
sdrgdvcl.1 |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 7 |
|
issdrg |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) ) |
| 8 |
3 7
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) ) |
| 9 |
8
|
simp3d |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) |
| 10 |
9
|
drngringd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
| 11 |
8
|
simp2d |
⊢ ( 𝜑 → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
| 13 |
12
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 14 |
11 13
|
syl |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 15 |
4 14
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 16 |
5 14
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 17 |
12 2
|
subrg0 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 18 |
11 17
|
syl |
⊢ ( 𝜑 → 0 = ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 19 |
6 18
|
neeqtrd |
⊢ ( 𝜑 → 𝑌 ≠ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 21 |
|
eqid |
⊢ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 22 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 23 |
20 21 22
|
drngunit |
⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ DivRing → ( 𝑌 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ↔ ( 𝑌 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑌 ≠ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 24 |
23
|
biimpar |
⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ DivRing ∧ ( 𝑌 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑌 ≠ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) ) → 𝑌 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 25 |
9 16 19 24
|
syl12anc |
⊢ ( 𝜑 → 𝑌 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 26 |
|
eqid |
⊢ ( /r ‘ ( 𝑅 ↾s 𝐴 ) ) = ( /r ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 27 |
20 21 26
|
dvrcl |
⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑌 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ) → ( 𝑋 ( /r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 28 |
10 15 25 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( /r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 29 |
12 1 21 26
|
subrgdv |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( /r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ) |
| 30 |
11 4 25 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 / 𝑌 ) = ( 𝑋 ( /r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ) |
| 31 |
28 30 14
|
3eltr4d |
⊢ ( 𝜑 → ( 𝑋 / 𝑌 ) ∈ 𝐴 ) |