| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdrgdvcl.i |
|
| 2 |
|
sdrgdvcl.0 |
|
| 3 |
|
sdrgdvcl.a |
|
| 4 |
|
sdrgdvcl.x |
|
| 5 |
|
sdrgdvcl.y |
|
| 6 |
|
sdrgdvcl.1 |
|
| 7 |
|
issdrg |
|
| 8 |
3 7
|
sylib |
|
| 9 |
8
|
simp3d |
|
| 10 |
9
|
drngringd |
|
| 11 |
8
|
simp2d |
|
| 12 |
|
eqid |
|
| 13 |
12
|
subrgbas |
|
| 14 |
11 13
|
syl |
|
| 15 |
4 14
|
eleqtrd |
|
| 16 |
5 14
|
eleqtrd |
|
| 17 |
12 2
|
subrg0 |
|
| 18 |
11 17
|
syl |
|
| 19 |
6 18
|
neeqtrd |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
20 21 22
|
drngunit |
|
| 24 |
23
|
biimpar |
|
| 25 |
9 16 19 24
|
syl12anc |
|
| 26 |
|
eqid |
|
| 27 |
20 21 26
|
dvrcl |
|
| 28 |
10 15 25 27
|
syl3anc |
|
| 29 |
12 1 21 26
|
subrgdv |
|
| 30 |
11 4 25 29
|
syl3anc |
|
| 31 |
28 30 14
|
3eltr4d |
|