| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdrginvcl.i |
|
| 2 |
|
sdrginvcl.0 |
|
| 3 |
|
issdrg |
|
| 4 |
3
|
biimpi |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
5
|
simp3d |
|
| 7 |
|
simp2 |
|
| 8 |
5
|
simp2d |
|
| 9 |
|
eqid |
|
| 10 |
9
|
subrgbas |
|
| 11 |
8 10
|
syl |
|
| 12 |
7 11
|
eleqtrd |
|
| 13 |
|
simp3 |
|
| 14 |
9 2
|
subrg0 |
|
| 15 |
8 14
|
syl |
|
| 16 |
13 15
|
neeqtrd |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
17 18 19
|
drnginvrcl |
|
| 21 |
6 12 16 20
|
syl3anc |
|
| 22 |
|
eqid |
|
| 23 |
17 22 18
|
drngunit |
|
| 24 |
23
|
biimpar |
|
| 25 |
6 12 16 24
|
syl12anc |
|
| 26 |
9 1 22 19
|
subrginv |
|
| 27 |
8 25 26
|
syl2anc |
|
| 28 |
21 27 11
|
3eltr4d |
|