| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdrginvcl.i |
|- I = ( invr ` R ) |
| 2 |
|
sdrginvcl.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
issdrg |
|- ( A e. ( SubDRing ` R ) <-> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) ) |
| 4 |
3
|
biimpi |
|- ( A e. ( SubDRing ` R ) -> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) ) |
| 6 |
5
|
simp3d |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> ( R |`s A ) e. DivRing ) |
| 7 |
|
simp2 |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> X e. A ) |
| 8 |
5
|
simp2d |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> A e. ( SubRing ` R ) ) |
| 9 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
| 10 |
9
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` ( R |`s A ) ) ) |
| 11 |
8 10
|
syl |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> A = ( Base ` ( R |`s A ) ) ) |
| 12 |
7 11
|
eleqtrd |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> X e. ( Base ` ( R |`s A ) ) ) |
| 13 |
|
simp3 |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> X =/= .0. ) |
| 14 |
9 2
|
subrg0 |
|- ( A e. ( SubRing ` R ) -> .0. = ( 0g ` ( R |`s A ) ) ) |
| 15 |
8 14
|
syl |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> .0. = ( 0g ` ( R |`s A ) ) ) |
| 16 |
13 15
|
neeqtrd |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> X =/= ( 0g ` ( R |`s A ) ) ) |
| 17 |
|
eqid |
|- ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) ) |
| 18 |
|
eqid |
|- ( 0g ` ( R |`s A ) ) = ( 0g ` ( R |`s A ) ) |
| 19 |
|
eqid |
|- ( invr ` ( R |`s A ) ) = ( invr ` ( R |`s A ) ) |
| 20 |
17 18 19
|
drnginvrcl |
|- ( ( ( R |`s A ) e. DivRing /\ X e. ( Base ` ( R |`s A ) ) /\ X =/= ( 0g ` ( R |`s A ) ) ) -> ( ( invr ` ( R |`s A ) ) ` X ) e. ( Base ` ( R |`s A ) ) ) |
| 21 |
6 12 16 20
|
syl3anc |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> ( ( invr ` ( R |`s A ) ) ` X ) e. ( Base ` ( R |`s A ) ) ) |
| 22 |
|
eqid |
|- ( Unit ` ( R |`s A ) ) = ( Unit ` ( R |`s A ) ) |
| 23 |
17 22 18
|
drngunit |
|- ( ( R |`s A ) e. DivRing -> ( X e. ( Unit ` ( R |`s A ) ) <-> ( X e. ( Base ` ( R |`s A ) ) /\ X =/= ( 0g ` ( R |`s A ) ) ) ) ) |
| 24 |
23
|
biimpar |
|- ( ( ( R |`s A ) e. DivRing /\ ( X e. ( Base ` ( R |`s A ) ) /\ X =/= ( 0g ` ( R |`s A ) ) ) ) -> X e. ( Unit ` ( R |`s A ) ) ) |
| 25 |
6 12 16 24
|
syl12anc |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> X e. ( Unit ` ( R |`s A ) ) ) |
| 26 |
9 1 22 19
|
subrginv |
|- ( ( A e. ( SubRing ` R ) /\ X e. ( Unit ` ( R |`s A ) ) ) -> ( I ` X ) = ( ( invr ` ( R |`s A ) ) ` X ) ) |
| 27 |
8 25 26
|
syl2anc |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> ( I ` X ) = ( ( invr ` ( R |`s A ) ) ` X ) ) |
| 28 |
21 27 11
|
3eltr4d |
|- ( ( A e. ( SubDRing ` R ) /\ X e. A /\ X =/= .0. ) -> ( I ` X ) e. A ) |