| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrrtcc.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
constrrtcc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 3 |
|
constrrtcc.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| 4 |
|
constrrtcc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 5 |
|
constrrtcc.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) |
| 6 |
|
constrrtcc.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
| 7 |
|
constrrtcc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 8 |
|
constrrtcc.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 9 |
|
constrrtcc.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) |
| 10 |
|
constrrtcc.2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 11 |
|
constrrtcc.3 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 12 |
|
constrrtcc.4 |
⊢ 𝑃 = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) |
| 13 |
|
constrrtcc.5 |
⊢ 𝑄 = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) |
| 14 |
|
constrrtcc.m |
⊢ 𝑀 = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 15 |
|
constrrtcc.n |
⊢ 𝑁 = - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 16 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑀 = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 17 |
1 6
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 18 |
1 7
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 19 |
17 18
|
subcld |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) ∈ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐹 ) ∈ ℂ ) |
| 21 |
20
|
absvalsqd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
| 22 |
13 21
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑄 = ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) ) |
| 23 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑋 ∈ ℂ ) |
| 24 |
1 2
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐴 ∈ ℂ ) |
| 26 |
8 24
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ∈ ℂ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑋 − 𝐴 ) ∈ ℂ ) |
| 28 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 29 |
1 3
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ ℂ ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
| 32 |
30 31
|
subeq0bd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐶 ) = 0 ) |
| 33 |
32
|
abs00bd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) = 0 ) |
| 34 |
28 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( abs ‘ ( 𝑋 − 𝐴 ) ) = 0 ) |
| 35 |
27 34
|
abs00d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑋 − 𝐴 ) = 0 ) |
| 36 |
23 25 35
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑋 = 𝐴 ) |
| 37 |
36
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐴 − 𝐷 ) ) ) |
| 38 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 39 |
1 5
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐷 ∈ ℂ ) |
| 41 |
25 40
|
abssubd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( abs ‘ ( 𝐴 − 𝐷 ) ) = ( abs ‘ ( 𝐷 − 𝐴 ) ) ) |
| 42 |
37 38 41
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( abs ‘ ( 𝐸 − 𝐹 ) ) = ( abs ‘ ( 𝐷 − 𝐴 ) ) ) |
| 43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐷 − 𝐴 ) ) ↑ 2 ) ) |
| 44 |
39 24
|
subcld |
⊢ ( 𝜑 → ( 𝐷 − 𝐴 ) ∈ ℂ ) |
| 45 |
44
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐷 − 𝐴 ) ) ↑ 2 ) = ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( abs ‘ ( 𝐷 − 𝐴 ) ) ↑ 2 ) = ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 47 |
22 43 46
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑄 = ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) ) |
| 49 |
32
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) = ( 0 · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 50 |
1 4
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 51 |
29 50
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 52 |
51
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
| 54 |
53
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 0 · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) = 0 ) |
| 55 |
49 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) = 0 ) |
| 56 |
12 55
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑃 = 0 ) |
| 57 |
56
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) = ( 0 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) |
| 58 |
48 57
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 0 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 59 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐷 − 𝐴 ) ∈ ℂ ) |
| 60 |
59
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ∈ ℂ ) |
| 61 |
59 60
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ∈ ℂ ) |
| 62 |
40
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ∗ ‘ 𝐷 ) ∈ ℂ ) |
| 63 |
40 25
|
addcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐷 + 𝐴 ) ∈ ℂ ) |
| 64 |
62 63
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
| 65 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 0 ∈ ℂ ) |
| 66 |
25
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 67 |
66 63
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
| 68 |
61 64 65 67
|
sub4d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 0 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − 0 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 69 |
61
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − 0 ) = ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 70 |
39 24
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 + 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝐷 + 𝐴 ) ) ) |
| 72 |
44
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ∈ ℂ ) |
| 73 |
39 24
|
addcld |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) ∈ ℂ ) |
| 74 |
72 73
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 + 𝐴 ) ) = ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 75 |
39
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐷 ) ∈ ℂ ) |
| 76 |
24
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 77 |
75 76 73
|
subdird |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝐷 + 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) |
| 78 |
71 74 77
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 80 |
69 79
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − 0 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 81 |
58 68 80
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 82 |
59 63 60
|
subdird |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 − 𝐴 ) − ( 𝐷 + 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 83 |
63 59
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( ( 𝐷 + 𝐴 ) − ( 𝐷 − 𝐴 ) ) = ( ( 𝐷 − 𝐴 ) − ( 𝐷 + 𝐴 ) ) ) |
| 84 |
40 25 25
|
pnncand |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 + 𝐴 ) − ( 𝐷 − 𝐴 ) ) = ( 𝐴 + 𝐴 ) ) |
| 85 |
25
|
2timesd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 86 |
84 85
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 + 𝐴 ) − ( 𝐷 − 𝐴 ) ) = ( 2 · 𝐴 ) ) |
| 87 |
86
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( ( 𝐷 + 𝐴 ) − ( 𝐷 − 𝐴 ) ) = - ( 2 · 𝐴 ) ) |
| 88 |
83 87
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 − 𝐴 ) − ( 𝐷 + 𝐴 ) ) = - ( 2 · 𝐴 ) ) |
| 89 |
88
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 − 𝐴 ) − ( 𝐷 + 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( - ( 2 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 90 |
81 82 89
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( - ( 2 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 91 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 92 |
90 91
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( - ( 2 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 93 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 2 ∈ ℂ ) |
| 94 |
93 25
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 2 · 𝐴 ) ∈ ℂ ) |
| 95 |
94
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( 2 · 𝐴 ) ∈ ℂ ) |
| 96 |
9
|
necomd |
⊢ ( 𝜑 → 𝐷 ≠ 𝐴 ) |
| 97 |
39 24 96
|
subne0d |
⊢ ( 𝜑 → ( 𝐷 − 𝐴 ) ≠ 0 ) |
| 98 |
44 97
|
cjne0d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ≠ 0 ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ≠ 0 ) |
| 100 |
95 60 99
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( - ( 2 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = - ( 2 · 𝐴 ) ) |
| 101 |
16 92 100
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑀 = - ( 2 · 𝐴 ) ) |
| 102 |
101
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑀 · 𝑋 ) = ( - ( 2 · 𝐴 ) · 𝑋 ) ) |
| 103 |
94 23
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( - ( 2 · 𝐴 ) · 𝑋 ) = - ( ( 2 · 𝐴 ) · 𝑋 ) ) |
| 104 |
93 25 23
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 2 · 𝐴 ) · 𝑋 ) = ( 2 · ( 𝐴 · 𝑋 ) ) ) |
| 105 |
25 23
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐴 · 𝑋 ) = ( 𝑋 · 𝐴 ) ) |
| 106 |
105
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 2 · ( 𝐴 · 𝑋 ) ) = ( 2 · ( 𝑋 · 𝐴 ) ) ) |
| 107 |
104 106
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 2 · 𝐴 ) · 𝑋 ) = ( 2 · ( 𝑋 · 𝐴 ) ) ) |
| 108 |
107
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( ( 2 · 𝐴 ) · 𝑋 ) = - ( 2 · ( 𝑋 · 𝐴 ) ) ) |
| 109 |
102 103 108
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑀 · 𝑋 ) = - ( 2 · ( 𝑋 · 𝐴 ) ) ) |
| 110 |
25
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 111 |
56
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑃 · 𝐷 ) = ( 0 · 𝐷 ) ) |
| 112 |
40
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 0 · 𝐷 ) = 0 ) |
| 113 |
111 112
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑃 · 𝐷 ) = 0 ) |
| 114 |
113
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − 0 ) ) |
| 115 |
40 25
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 116 |
66 115
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 117 |
116
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − 0 ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) |
| 118 |
114 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) |
| 119 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑄 · 𝐴 ) = ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ) |
| 120 |
119
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ) ) |
| 121 |
118 120
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ) ) ) |
| 122 |
62 115
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 123 |
61 25
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ∈ ℂ ) |
| 124 |
116 122 123
|
subsubd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ) ) |
| 125 |
70
|
negeqd |
⊢ ( 𝜑 → - ( ∗ ‘ ( 𝐷 − 𝐴 ) ) = - ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 126 |
75 76
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐷 ) ) ) |
| 127 |
125 126
|
eqtr2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐷 ) ) = - ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) |
| 128 |
127
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐷 ) ) · ( 𝐷 · 𝐴 ) ) = ( - ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 · 𝐴 ) ) ) |
| 129 |
39 24
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 130 |
76 75 129
|
subdird |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) − ( ∗ ‘ 𝐷 ) ) · ( 𝐷 · 𝐴 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 131 |
72 129
|
mulcomd |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 · 𝐴 ) ) = ( ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 132 |
131
|
negeqd |
⊢ ( 𝜑 → - ( ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 · 𝐴 ) ) = - ( ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 133 |
72 129
|
mulneg1d |
⊢ ( 𝜑 → ( - ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 · 𝐴 ) ) = - ( ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 · 𝐴 ) ) ) |
| 134 |
129 72
|
mulneg1d |
⊢ ( 𝜑 → ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = - ( ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 135 |
132 133 134
|
3eqtr4d |
⊢ ( 𝜑 → ( - ( ∗ ‘ ( 𝐷 − 𝐴 ) ) · ( 𝐷 · 𝐴 ) ) = ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 136 |
128 130 135
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) = ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) = ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 138 |
59 60 25
|
mul32d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) = ( ( ( 𝐷 − 𝐴 ) · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 139 |
40 25 25
|
subdird |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 − 𝐴 ) · 𝐴 ) = ( ( 𝐷 · 𝐴 ) − ( 𝐴 · 𝐴 ) ) ) |
| 140 |
25
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 141 |
140
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) = ( ( 𝐷 · 𝐴 ) − ( 𝐴 · 𝐴 ) ) ) |
| 142 |
139 141
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 − 𝐴 ) · 𝐴 ) = ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) ) |
| 143 |
142
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 − 𝐴 ) · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 144 |
138 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 145 |
137 144
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ) = ( ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) + ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 146 |
115
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 147 |
115 110
|
subcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 148 |
146 147 60
|
adddird |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( - ( 𝐷 · 𝐴 ) + ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) + ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 149 |
115
|
subidd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝐷 · 𝐴 ) − ( 𝐷 · 𝐴 ) ) = 0 ) |
| 150 |
149
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 · 𝐴 ) − ( 𝐷 · 𝐴 ) ) − ( 𝐴 ↑ 2 ) ) = ( 0 − ( 𝐴 ↑ 2 ) ) ) |
| 151 |
146 147
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( - ( 𝐷 · 𝐴 ) + ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) + - ( 𝐷 · 𝐴 ) ) ) |
| 152 |
147 115
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) + - ( 𝐷 · 𝐴 ) ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) − ( 𝐷 · 𝐴 ) ) ) |
| 153 |
115 110 115
|
sub32d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) − ( 𝐷 · 𝐴 ) ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐷 · 𝐴 ) ) − ( 𝐴 ↑ 2 ) ) ) |
| 154 |
151 152 153
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( - ( 𝐷 · 𝐴 ) + ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐷 · 𝐴 ) ) − ( 𝐴 ↑ 2 ) ) ) |
| 155 |
|
df-neg |
⊢ - ( 𝐴 ↑ 2 ) = ( 0 − ( 𝐴 ↑ 2 ) ) |
| 156 |
155
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( 𝐴 ↑ 2 ) = ( 0 − ( 𝐴 ↑ 2 ) ) ) |
| 157 |
150 154 156
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( - ( 𝐷 · 𝐴 ) + ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) ) = - ( 𝐴 ↑ 2 ) ) |
| 158 |
157
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( - ( 𝐷 · 𝐴 ) + ( ( 𝐷 · 𝐴 ) − ( 𝐴 ↑ 2 ) ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( - ( 𝐴 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 159 |
145 148 158
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐴 ) ) = ( - ( 𝐴 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 160 |
121 124 159
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) = ( - ( 𝐴 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 161 |
91
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) |
| 162 |
160 161
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( - ( 𝐴 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 163 |
110
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 164 |
163 60 99
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( - ( 𝐴 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = - ( 𝐴 ↑ 2 ) ) |
| 165 |
162 164
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( 𝐴 ↑ 2 ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 166 |
110 165
|
negcon1ad |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 ↑ 2 ) ) |
| 167 |
15 166
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑁 = ( 𝐴 ↑ 2 ) ) |
| 168 |
109 167
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑀 · 𝑋 ) + 𝑁 ) = ( - ( 2 · ( 𝑋 · 𝐴 ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 169 |
168
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = ( ( 𝑋 ↑ 2 ) + ( - ( 2 · ( 𝑋 · 𝐴 ) ) + ( 𝐴 ↑ 2 ) ) ) ) |
| 170 |
23
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
| 171 |
23 25
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝑋 · 𝐴 ) ∈ ℂ ) |
| 172 |
93 171
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 2 · ( 𝑋 · 𝐴 ) ) ∈ ℂ ) |
| 173 |
172
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → - ( 2 · ( 𝑋 · 𝐴 ) ) ∈ ℂ ) |
| 174 |
170 173 110
|
addassd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝑋 ↑ 2 ) + - ( 2 · ( 𝑋 · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝑋 ↑ 2 ) + ( - ( 2 · ( 𝑋 · 𝐴 ) ) + ( 𝐴 ↑ 2 ) ) ) ) |
| 175 |
170 172
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑋 ↑ 2 ) + - ( 2 · ( 𝑋 · 𝐴 ) ) ) = ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐴 ) ) ) ) |
| 176 |
175
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( ( 𝑋 ↑ 2 ) + - ( 2 · ( 𝑋 · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 177 |
169 174 176
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 178 |
|
binom2sub |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑋 − 𝐴 ) ↑ 2 ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 179 |
23 25 178
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑋 − 𝐴 ) ↑ 2 ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 180 |
35
|
sq0id |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑋 − 𝐴 ) ↑ 2 ) = 0 ) |
| 181 |
177 179 180
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ) |
| 182 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑀 = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 183 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝐸 ∈ ℂ ) |
| 184 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝐸 = 𝐹 ) |
| 185 |
183 184
|
subeq0bd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐸 − 𝐹 ) = 0 ) |
| 186 |
185
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) = ( 0 · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
| 187 |
19
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ∈ ℂ ) |
| 188 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ∈ ℂ ) |
| 189 |
188
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 0 · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) = 0 ) |
| 190 |
186 189
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) = 0 ) |
| 191 |
13 190
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑄 = 0 ) |
| 192 |
191
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) = ( 0 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) ) |
| 193 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 194 |
193
|
absvalsqd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ↑ 2 ) = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 195 |
12 194
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑃 = ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ↑ 2 ) ) |
| 196 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 197 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑋 ∈ ℂ ) |
| 198 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝐷 ∈ ℂ ) |
| 199 |
8 39
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐷 ) ∈ ℂ ) |
| 200 |
199
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑋 − 𝐷 ) ∈ ℂ ) |
| 201 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 202 |
185
|
abs00bd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( abs ‘ ( 𝐸 − 𝐹 ) ) = 0 ) |
| 203 |
201 202
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( abs ‘ ( 𝑋 − 𝐷 ) ) = 0 ) |
| 204 |
200 203
|
abs00d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑋 − 𝐷 ) = 0 ) |
| 205 |
197 198 204
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑋 = 𝐷 ) |
| 206 |
205
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐷 − 𝐴 ) ) ) |
| 207 |
196 206
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) = ( abs ‘ ( 𝐷 − 𝐴 ) ) ) |
| 208 |
207
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐷 − 𝐴 ) ) ↑ 2 ) ) |
| 209 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( abs ‘ ( 𝐷 − 𝐴 ) ) ↑ 2 ) = ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 210 |
195 208 209
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑃 = ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 211 |
210
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) |
| 212 |
192 211
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( 0 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 213 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 0 ∈ ℂ ) |
| 214 |
198
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ∗ ‘ 𝐷 ) ∈ ℂ ) |
| 215 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝐴 ∈ ℂ ) |
| 216 |
198 215
|
addcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐷 + 𝐴 ) ∈ ℂ ) |
| 217 |
214 216
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
| 218 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐷 − 𝐴 ) ∈ ℂ ) |
| 219 |
218
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ∈ ℂ ) |
| 220 |
218 219
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ∈ ℂ ) |
| 221 |
215
|
cjcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 222 |
221 216
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
| 223 |
213 217 220 222
|
sub4d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 0 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( 0 − ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 224 |
218 219
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = - ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 225 |
198 215
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( 𝐷 − 𝐴 ) = ( 𝐴 − 𝐷 ) ) |
| 226 |
225
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( 𝐴 − 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 227 |
|
df-neg |
⊢ - ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( 0 − ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 228 |
227
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( 0 − ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 229 |
224 226 228
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 0 − ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) = ( ( 𝐴 − 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 230 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 231 |
229 230
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 0 − ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( 𝐴 − 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 232 |
212 223 231
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( 𝐴 − 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 233 |
215 198
|
subcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐴 − 𝐷 ) ∈ ℂ ) |
| 234 |
233 216 219
|
subdird |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝐴 − 𝐷 ) − ( 𝐷 + 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( ( 𝐴 − 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( 𝐷 + 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 235 |
216 233
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( ( 𝐷 + 𝐴 ) − ( 𝐴 − 𝐷 ) ) = ( ( 𝐴 − 𝐷 ) − ( 𝐷 + 𝐴 ) ) ) |
| 236 |
198
|
2timesd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 2 · 𝐷 ) = ( 𝐷 + 𝐷 ) ) |
| 237 |
215 198 198
|
pnncand |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐴 + 𝐷 ) − ( 𝐴 − 𝐷 ) ) = ( 𝐷 + 𝐷 ) ) |
| 238 |
215 198
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐴 + 𝐷 ) = ( 𝐷 + 𝐴 ) ) |
| 239 |
238
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐴 + 𝐷 ) − ( 𝐴 − 𝐷 ) ) = ( ( 𝐷 + 𝐴 ) − ( 𝐴 − 𝐷 ) ) ) |
| 240 |
236 237 239
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 + 𝐴 ) − ( 𝐴 − 𝐷 ) ) = ( 2 · 𝐷 ) ) |
| 241 |
240
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( ( 𝐷 + 𝐴 ) − ( 𝐴 − 𝐷 ) ) = - ( 2 · 𝐷 ) ) |
| 242 |
235 241
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐴 − 𝐷 ) − ( 𝐷 + 𝐴 ) ) = - ( 2 · 𝐷 ) ) |
| 243 |
242
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝐴 − 𝐷 ) − ( 𝐷 + 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( - ( 2 · 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 244 |
232 234 243
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 2 · 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 245 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 246 |
244 245
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( - ( 2 · 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 247 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 2 ∈ ℂ ) |
| 248 |
247 198
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 2 · 𝐷 ) ∈ ℂ ) |
| 249 |
248
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( 2 · 𝐷 ) ∈ ℂ ) |
| 250 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ≠ 0 ) |
| 251 |
249 219 250
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( - ( 2 · 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = - ( 2 · 𝐷 ) ) |
| 252 |
182 246 251
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑀 = - ( 2 · 𝐷 ) ) |
| 253 |
252
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑀 · 𝑋 ) = ( - ( 2 · 𝐷 ) · 𝑋 ) ) |
| 254 |
248 197
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 2 · 𝐷 ) · 𝑋 ) = - ( ( 2 · 𝐷 ) · 𝑋 ) ) |
| 255 |
247 198 197
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 2 · 𝐷 ) · 𝑋 ) = ( 2 · ( 𝐷 · 𝑋 ) ) ) |
| 256 |
198 197
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐷 · 𝑋 ) = ( 𝑋 · 𝐷 ) ) |
| 257 |
256
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 2 · ( 𝐷 · 𝑋 ) ) = ( 2 · ( 𝑋 · 𝐷 ) ) ) |
| 258 |
255 257
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 2 · 𝐷 ) · 𝑋 ) = ( 2 · ( 𝑋 · 𝐷 ) ) ) |
| 259 |
258
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( ( 2 · 𝐷 ) · 𝑋 ) = - ( 2 · ( 𝑋 · 𝐷 ) ) ) |
| 260 |
253 254 259
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑀 · 𝑋 ) = - ( 2 · ( 𝑋 · 𝐷 ) ) ) |
| 261 |
198
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 262 |
210
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑃 · 𝐷 ) = ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ) |
| 263 |
262
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ) ) |
| 264 |
191
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑄 · 𝐴 ) = ( 0 · 𝐴 ) ) |
| 265 |
215
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 0 · 𝐴 ) = 0 ) |
| 266 |
264 265
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑄 · 𝐴 ) = 0 ) |
| 267 |
266
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − 0 ) ) |
| 268 |
198 215
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 269 |
214 268
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 270 |
269
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − 0 ) = ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) |
| 271 |
267 270
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) |
| 272 |
263 271
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 273 |
221 268
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 274 |
220 198
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ∈ ℂ ) |
| 275 |
273 274 269
|
sub32d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ) ) |
| 276 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) = ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 277 |
218 219 198
|
mul32d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) = ( ( ( 𝐷 − 𝐴 ) · 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 278 |
198 215 198
|
subdird |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 − 𝐴 ) · 𝐷 ) = ( ( 𝐷 · 𝐷 ) − ( 𝐴 · 𝐷 ) ) ) |
| 279 |
198
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐷 ↑ 2 ) = ( 𝐷 · 𝐷 ) ) |
| 280 |
198 215
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝐷 · 𝐴 ) = ( 𝐴 · 𝐷 ) ) |
| 281 |
279 280
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) = ( ( 𝐷 · 𝐷 ) − ( 𝐴 · 𝐷 ) ) ) |
| 282 |
278 281
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 − 𝐴 ) · 𝐷 ) = ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) ) |
| 283 |
282
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝐷 − 𝐴 ) · 𝐷 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 284 |
277 283
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) = ( ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 285 |
276 284
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ) = ( ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 286 |
268
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 287 |
261 268
|
subcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 288 |
286 287 219
|
subdird |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( - ( 𝐷 · 𝐴 ) − ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( ( - ( 𝐷 · 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) − ( ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) ) |
| 289 |
286 268
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 𝐷 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) = ( ( 𝐷 · 𝐴 ) + - ( 𝐷 · 𝐴 ) ) ) |
| 290 |
268 268
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 · 𝐴 ) + - ( 𝐷 · 𝐴 ) ) = ( ( 𝐷 · 𝐴 ) − ( 𝐷 · 𝐴 ) ) ) |
| 291 |
268
|
subidd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝐷 · 𝐴 ) − ( 𝐷 · 𝐴 ) ) = 0 ) |
| 292 |
289 290 291
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 𝐷 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) = 0 ) |
| 293 |
292
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( - ( 𝐷 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) − ( 𝐷 ↑ 2 ) ) = ( 0 − ( 𝐷 ↑ 2 ) ) ) |
| 294 |
286 261 268
|
subsub3d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 𝐷 · 𝐴 ) − ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) ) = ( ( - ( 𝐷 · 𝐴 ) + ( 𝐷 · 𝐴 ) ) − ( 𝐷 ↑ 2 ) ) ) |
| 295 |
|
df-neg |
⊢ - ( 𝐷 ↑ 2 ) = ( 0 − ( 𝐷 ↑ 2 ) ) |
| 296 |
295
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( 𝐷 ↑ 2 ) = ( 0 − ( 𝐷 ↑ 2 ) ) ) |
| 297 |
293 294 296
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( - ( 𝐷 · 𝐴 ) − ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) ) = - ( 𝐷 ↑ 2 ) ) |
| 298 |
297
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( - ( 𝐷 · 𝐴 ) − ( ( 𝐷 ↑ 2 ) − ( 𝐷 · 𝐴 ) ) ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = ( - ( 𝐷 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 299 |
285 288 298
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( ( ( 𝐷 − 𝐴 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) · 𝐷 ) ) = ( - ( 𝐷 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 300 |
272 275 299
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) = ( - ( 𝐷 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 301 |
245
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) |
| 302 |
300 301
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( - ( 𝐷 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) ) |
| 303 |
261
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 304 |
303 219 250
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( - ( 𝐷 ↑ 2 ) · ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) / ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ) = - ( 𝐷 ↑ 2 ) ) |
| 305 |
302 304
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( 𝐷 ↑ 2 ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 306 |
261 305
|
negcon1ad |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( 𝐷 ↑ 2 ) ) |
| 307 |
15 306
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝑁 = ( 𝐷 ↑ 2 ) ) |
| 308 |
260 307
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑀 · 𝑋 ) + 𝑁 ) = ( - ( 2 · ( 𝑋 · 𝐷 ) ) + ( 𝐷 ↑ 2 ) ) ) |
| 309 |
308
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = ( ( 𝑋 ↑ 2 ) + ( - ( 2 · ( 𝑋 · 𝐷 ) ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 310 |
197
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
| 311 |
197 198
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 𝑋 · 𝐷 ) ∈ ℂ ) |
| 312 |
247 311
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( 2 · ( 𝑋 · 𝐷 ) ) ∈ ℂ ) |
| 313 |
312
|
negcld |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → - ( 2 · ( 𝑋 · 𝐷 ) ) ∈ ℂ ) |
| 314 |
310 313 261
|
addassd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝑋 ↑ 2 ) + - ( 2 · ( 𝑋 · 𝐷 ) ) ) + ( 𝐷 ↑ 2 ) ) = ( ( 𝑋 ↑ 2 ) + ( - ( 2 · ( 𝑋 · 𝐷 ) ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 315 |
310 312
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑋 ↑ 2 ) + - ( 2 · ( 𝑋 · 𝐷 ) ) ) = ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐷 ) ) ) ) |
| 316 |
315
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( ( 𝑋 ↑ 2 ) + - ( 2 · ( 𝑋 · 𝐷 ) ) ) + ( 𝐷 ↑ 2 ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐷 ) ) ) + ( 𝐷 ↑ 2 ) ) ) |
| 317 |
309 314 316
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐷 ) ) ) + ( 𝐷 ↑ 2 ) ) ) |
| 318 |
|
binom2sub |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝑋 − 𝐷 ) ↑ 2 ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐷 ) ) ) + ( 𝐷 ↑ 2 ) ) ) |
| 319 |
197 198 318
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑋 − 𝐷 ) ↑ 2 ) = ( ( ( 𝑋 ↑ 2 ) − ( 2 · ( 𝑋 · 𝐷 ) ) ) + ( 𝐷 ↑ 2 ) ) ) |
| 320 |
204
|
sq0id |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑋 − 𝐷 ) ↑ 2 ) = 0 ) |
| 321 |
317 319 320
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ) |
| 322 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝑆 ⊆ ℂ ) |
| 323 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐴 ∈ 𝑆 ) |
| 324 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐵 ∈ 𝑆 ) |
| 325 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐶 ∈ 𝑆 ) |
| 326 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐷 ∈ 𝑆 ) |
| 327 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐸 ∈ 𝑆 ) |
| 328 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐹 ∈ 𝑆 ) |
| 329 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝑋 ∈ ℂ ) |
| 330 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐴 ≠ 𝐷 ) |
| 331 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 332 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 333 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐵 ≠ 𝐶 ) |
| 334 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → 𝐸 ≠ 𝐹 ) |
| 335 |
322 323 324 325 326 327 328 329 330 331 332 12 13 14 15 333 334
|
constrrtcclem |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐸 ≠ 𝐹 ) ) → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ) |
| 336 |
181 321 335
|
pm2.61da2ne |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ) |