| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrrtcc.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
constrrtcc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 3 |
|
constrrtcc.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| 4 |
|
constrrtcc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 5 |
|
constrrtcc.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) |
| 6 |
|
constrrtcc.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
| 7 |
|
constrrtcc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 8 |
|
constrrtcc.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 9 |
|
constrrtcc.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) |
| 10 |
|
constrrtcc.2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 11 |
|
constrrtcc.3 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 12 |
|
constrrtcc.4 |
⊢ 𝑃 = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) |
| 13 |
|
constrrtcc.5 |
⊢ 𝑄 = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) |
| 14 |
|
constrrtcc.m |
⊢ 𝑀 = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 15 |
|
constrrtcc.n |
⊢ 𝑁 = - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 16 |
|
constrrtcclem.1 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 17 |
|
constrrtcclem.2 |
⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) |
| 18 |
8
|
sqcld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
| 19 |
1 6
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 20 |
1 7
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 21 |
19 20
|
subcld |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) ∈ ℂ ) |
| 22 |
21
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ∈ ℂ ) |
| 23 |
21 22
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ∈ ℂ ) |
| 24 |
13 23
|
eqeltrid |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 25 |
1 5
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 26 |
25
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐷 ) ∈ ℂ ) |
| 27 |
1 2
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 28 |
25 27
|
addcld |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) ∈ ℂ ) |
| 29 |
26 28
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
| 30 |
24 29
|
subcld |
⊢ ( 𝜑 → ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) ∈ ℂ ) |
| 31 |
1 3
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 32 |
1 4
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 33 |
31 32
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 34 |
33
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
| 35 |
33 34
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ∈ ℂ ) |
| 36 |
12 35
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 37 |
27
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 38 |
37 28
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
| 39 |
36 38
|
subcld |
⊢ ( 𝜑 → ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ∈ ℂ ) |
| 40 |
30 39
|
subcld |
⊢ ( 𝜑 → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ∈ ℂ ) |
| 41 |
26 37
|
subcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 42 |
25 27
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 43 |
25 27
|
subcld |
⊢ ( 𝜑 → ( 𝐷 − 𝐴 ) ∈ ℂ ) |
| 44 |
9
|
necomd |
⊢ ( 𝜑 → 𝐷 ≠ 𝐴 ) |
| 45 |
25 27 44
|
subne0d |
⊢ ( 𝜑 → ( 𝐷 − 𝐴 ) ≠ 0 ) |
| 46 |
43 45
|
cjne0d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ≠ 0 ) |
| 47 |
42 46
|
eqnetrrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ≠ 0 ) |
| 48 |
40 41 47
|
divcld |
⊢ ( 𝜑 → ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 49 |
14 48
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 50 |
49 8
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ ℂ ) |
| 51 |
25 27
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 52 |
37 51
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 53 |
36 25
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝐷 ) ∈ ℂ ) |
| 54 |
52 53
|
subcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ∈ ℂ ) |
| 55 |
26 51
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 56 |
24 27
|
mulcld |
⊢ ( 𝜑 → ( 𝑄 · 𝐴 ) ∈ ℂ ) |
| 57 |
55 56
|
subcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ∈ ℂ ) |
| 58 |
54 57
|
subcld |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ∈ ℂ ) |
| 59 |
58 41 47
|
divcld |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 60 |
59
|
negcld |
⊢ ( 𝜑 → - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 61 |
15 60
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 62 |
18 50 61
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) ) |
| 63 |
41 18
|
mulcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) ∈ ℂ ) |
| 64 |
40 8
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ∈ ℂ ) |
| 65 |
26 37 18
|
subdird |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ) ) |
| 66 |
30 39 8
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) − ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) |
| 67 |
65 66
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) − ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) ) |
| 68 |
26 18
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) ∈ ℂ ) |
| 69 |
30 8
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ∈ ℂ ) |
| 70 |
37 18
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ∈ ℂ ) |
| 71 |
39 8
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ∈ ℂ ) |
| 72 |
68 69 70 71
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) − ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) ) |
| 73 |
8 27
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ∈ ℂ ) |
| 74 |
8 25
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐷 ) ∈ ℂ ) |
| 75 |
73 74
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) = ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
| 77 |
73
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ∈ ℂ ) |
| 78 |
31 32 16
|
subne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ≠ 0 ) |
| 79 |
33 78
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐶 ) ) ≠ 0 ) |
| 80 |
10 79
|
eqnetrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) ≠ 0 ) |
| 81 |
73
|
abs00ad |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) = 0 ↔ ( 𝑋 − 𝐴 ) = 0 ) ) |
| 82 |
81
|
necon3bid |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) ≠ 0 ↔ ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
| 83 |
80 82
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ≠ 0 ) |
| 84 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ↑ 2 ) ) |
| 85 |
73
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) ↑ 2 ) = ( ( 𝑋 − 𝐴 ) · ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ) ) |
| 86 |
33
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ↑ 2 ) = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 87 |
84 85 86
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ) = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 88 |
87 12
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ) = 𝑃 ) |
| 89 |
73 77 83 88
|
mvllmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐴 ) ) = ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) |
| 90 |
89 77
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑋 − 𝐴 ) ) ∈ ℂ ) |
| 91 |
37 90
|
addcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) ∈ ℂ ) |
| 92 |
91 73 74
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
| 93 |
36 73 83
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑃 / ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐴 ) ) = 𝑃 ) |
| 94 |
93
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + ( ( 𝑃 / ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) ) |
| 95 |
37 73 90 94
|
joinlmuladdmuld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) ) |
| 96 |
95
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) · ( 𝑋 − 𝐷 ) ) ) |
| 97 |
37 73
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) ∈ ℂ ) |
| 98 |
97 36 74
|
adddird |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) + ( 𝑃 · ( 𝑋 − 𝐷 ) ) ) ) |
| 99 |
37 73 74
|
mulassd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
| 100 |
8 27 8 25
|
mulsubd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) = ( ( ( 𝑋 · 𝑋 ) + ( 𝐷 · 𝐴 ) ) − ( ( 𝑋 · 𝐷 ) + ( 𝑋 · 𝐴 ) ) ) ) |
| 101 |
8
|
sqvald |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
| 102 |
101
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 𝐷 · 𝐴 ) ) = ( ( 𝑋 · 𝑋 ) + ( 𝐷 · 𝐴 ) ) ) |
| 103 |
8 25 27
|
adddid |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐷 + 𝐴 ) ) = ( ( 𝑋 · 𝐷 ) + ( 𝑋 · 𝐴 ) ) ) |
| 104 |
102 103
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝐷 · 𝐴 ) ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( 𝑋 · 𝑋 ) + ( 𝐷 · 𝐴 ) ) − ( ( 𝑋 · 𝐷 ) + ( 𝑋 · 𝐴 ) ) ) ) |
| 105 |
8 28
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
| 106 |
18 51 105
|
addsubd |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝐷 · 𝐴 ) ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) |
| 107 |
100 104 106
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) |
| 108 |
107
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) ) |
| 109 |
18 105
|
subcld |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ∈ ℂ ) |
| 110 |
37 109 51
|
adddid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 111 |
99 108 110
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 112 |
36 8 25
|
subdid |
⊢ ( 𝜑 → ( 𝑃 · ( 𝑋 − 𝐷 ) ) = ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) |
| 113 |
111 112
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) + ( 𝑃 · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
| 114 |
96 98 113
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
| 115 |
8 27
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐴 ) ) = ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐴 ) ) ) |
| 116 |
115 89
|
eqtr3d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐴 ) ) = ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) |
| 117 |
8
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
| 118 |
117 37 90
|
subaddd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐴 ) ) = ( 𝑃 / ( 𝑋 − 𝐴 ) ) ↔ ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) = ( ∗ ‘ 𝑋 ) ) ) |
| 119 |
116 118
|
mpbid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) = ( ∗ ‘ 𝑋 ) ) |
| 120 |
119
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
| 121 |
92 114 120
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
| 122 |
37 109
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ∈ ℂ ) |
| 123 |
122 52
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ∈ ℂ ) |
| 124 |
36 8
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝑋 ) ∈ ℂ ) |
| 125 |
123 124 53
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑃 · 𝑋 ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
| 126 |
122 52 124
|
add32d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 127 |
126
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑃 · 𝑋 ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑃 · 𝐷 ) ) ) |
| 128 |
121 125 127
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑃 · 𝐷 ) ) ) |
| 129 |
122 124
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) ∈ ℂ ) |
| 130 |
129 52 53
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) ) |
| 131 |
38 8
|
mulcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ∈ ℂ ) |
| 132 |
70 131 124
|
subadd23d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 · 𝑋 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
| 133 |
37 18 105
|
subdid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 134 |
37 8 28
|
mul12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( 𝑋 · ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) |
| 135 |
8 38
|
mulcomd |
⊢ ( 𝜑 → ( 𝑋 · ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
| 136 |
134 135
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
| 137 |
136
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
| 138 |
133 137
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
| 139 |
138
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑃 · 𝑋 ) ) ) |
| 140 |
36 38 8
|
subdird |
⊢ ( 𝜑 → ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) = ( ( 𝑃 · 𝑋 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
| 141 |
140
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 · 𝑋 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
| 142 |
132 139 141
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) |
| 143 |
142
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) ) |
| 144 |
128 130 143
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) ) |
| 145 |
74
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ∈ ℂ ) |
| 146 |
19 20 17
|
subne0d |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) ≠ 0 ) |
| 147 |
21 146
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐸 − 𝐹 ) ) ≠ 0 ) |
| 148 |
11 147
|
eqnetrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) ≠ 0 ) |
| 149 |
74
|
abs00ad |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) = 0 ↔ ( 𝑋 − 𝐷 ) = 0 ) ) |
| 150 |
149
|
necon3bid |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) ≠ 0 ↔ ( 𝑋 − 𝐷 ) ≠ 0 ) ) |
| 151 |
148 150
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 − 𝐷 ) ≠ 0 ) |
| 152 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) ) |
| 153 |
74
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) ↑ 2 ) = ( ( 𝑋 − 𝐷 ) · ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ) ) |
| 154 |
21
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
| 155 |
152 153 154
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐷 ) · ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
| 156 |
155 13
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐷 ) · ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ) = 𝑄 ) |
| 157 |
74 145 151 156
|
mvllmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐷 ) ) = ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) |
| 158 |
157 145
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑄 / ( 𝑋 − 𝐷 ) ) ∈ ℂ ) |
| 159 |
26 158
|
addcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) ∈ ℂ ) |
| 160 |
159 74 73
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
| 161 |
24 74 151
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑄 / ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐷 ) ) = 𝑄 ) |
| 162 |
161
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + ( ( 𝑄 / ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) ) |
| 163 |
26 74 158 162
|
joinlmuladdmuld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) ) |
| 164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) · ( 𝑋 − 𝐴 ) ) ) |
| 165 |
26 74
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) ∈ ℂ ) |
| 166 |
165 24 73
|
adddird |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) + ( 𝑄 · ( 𝑋 − 𝐴 ) ) ) ) |
| 167 |
26 74 73
|
mulassd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
| 168 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
| 169 |
167 168
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
| 170 |
107
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) ) |
| 171 |
26 109 51
|
adddid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 172 |
169 170 171
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 173 |
24 8 27
|
subdid |
⊢ ( 𝜑 → ( 𝑄 · ( 𝑋 − 𝐴 ) ) = ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) |
| 174 |
172 173
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) + ( 𝑄 · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 175 |
164 166 174
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 176 |
8 25
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐷 ) ) = ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐷 ) ) ) |
| 177 |
176 157
|
eqtr3d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐷 ) ) = ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) |
| 178 |
117 26 158
|
subaddd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐷 ) ) = ( 𝑄 / ( 𝑋 − 𝐷 ) ) ↔ ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) = ( ∗ ‘ 𝑋 ) ) ) |
| 179 |
177 178
|
mpbid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) = ( ∗ ‘ 𝑋 ) ) |
| 180 |
179
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
| 181 |
160 175 180
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 182 |
26 109
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ∈ ℂ ) |
| 183 |
182 55
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ∈ ℂ ) |
| 184 |
24 8
|
mulcld |
⊢ ( 𝜑 → ( 𝑄 · 𝑋 ) ∈ ℂ ) |
| 185 |
183 184 56
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑄 · 𝑋 ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 186 |
182 55 184
|
add32d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
| 187 |
186
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑄 · 𝑋 ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑄 · 𝐴 ) ) ) |
| 188 |
181 185 187
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑄 · 𝐴 ) ) ) |
| 189 |
182 184
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) ∈ ℂ ) |
| 190 |
189 55 56
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 191 |
29 8
|
mulcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ∈ ℂ ) |
| 192 |
68 191 184
|
subadd23d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 · 𝑋 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
| 193 |
26 18 105
|
subdid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ) |
| 194 |
26 8 28
|
mul12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( 𝑋 · ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) ) |
| 195 |
8 29
|
mulcomd |
⊢ ( 𝜑 → ( 𝑋 · ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
| 196 |
194 195
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
| 197 |
196
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
| 198 |
193 197
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
| 199 |
198
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑄 · 𝑋 ) ) ) |
| 200 |
24 29 8
|
subdird |
⊢ ( 𝜑 → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
| 201 |
200
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 · 𝑋 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
| 202 |
192 199 201
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) |
| 203 |
202
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 204 |
188 190 203
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 205 |
76 144 204
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 206 |
142 129
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ∈ ℂ ) |
| 207 |
202 189
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ∈ ℂ ) |
| 208 |
206 54 207 57
|
addsubeq4d |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ↔ ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) ) |
| 209 |
205 208
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 210 |
67 72 209
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
| 211 |
63 64 210
|
mvlraddd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) ) |
| 212 |
41 18 47 211
|
mvllmuld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) = ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 213 |
58 64 41 47
|
divsubdird |
⊢ ( 𝜑 → ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 214 |
15
|
eqcomi |
⊢ - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = 𝑁 |
| 215 |
214
|
a1i |
⊢ ( 𝜑 → - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = 𝑁 ) |
| 216 |
59 215
|
negcon1ad |
⊢ ( 𝜑 → - 𝑁 = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 217 |
216
|
oveq1d |
⊢ ( 𝜑 → ( - 𝑁 − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) = ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 218 |
213 217
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( - 𝑁 − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 219 |
40 8 41 47
|
div23d |
⊢ ( 𝜑 → ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) · 𝑋 ) ) |
| 220 |
14
|
oveq1i |
⊢ ( 𝑀 · 𝑋 ) = ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) · 𝑋 ) |
| 221 |
219 220
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( 𝑀 · 𝑋 ) ) |
| 222 |
221
|
oveq2d |
⊢ ( 𝜑 → ( - 𝑁 − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) = ( - 𝑁 − ( 𝑀 · 𝑋 ) ) ) |
| 223 |
212 218 222
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) = ( - 𝑁 − ( 𝑀 · 𝑋 ) ) ) |
| 224 |
216 59
|
eqeltrd |
⊢ ( 𝜑 → - 𝑁 ∈ ℂ ) |
| 225 |
18 50 224
|
addlsub |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ↔ ( 𝑋 ↑ 2 ) = ( - 𝑁 − ( 𝑀 · 𝑋 ) ) ) ) |
| 226 |
223 225
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ) |
| 227 |
18 50
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) ∈ ℂ ) |
| 228 |
|
addeq0 |
⊢ ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = 0 ↔ ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ) ) |
| 229 |
227 61 228
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = 0 ↔ ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ) ) |
| 230 |
226 229
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = 0 ) |
| 231 |
62 230
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ) |