Step |
Hyp |
Ref |
Expression |
1 |
|
constrrtcc.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
constrrtcc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
3 |
|
constrrtcc.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
4 |
|
constrrtcc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
5 |
|
constrrtcc.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) |
6 |
|
constrrtcc.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
7 |
|
constrrtcc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
8 |
|
constrrtcc.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
9 |
|
constrrtcc.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) |
10 |
|
constrrtcc.2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
11 |
|
constrrtcc.3 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
12 |
|
constrrtcc.4 |
⊢ 𝑃 = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) |
13 |
|
constrrtcc.5 |
⊢ 𝑄 = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) |
14 |
|
constrrtcc.m |
⊢ 𝑀 = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
15 |
|
constrrtcc.n |
⊢ 𝑁 = - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
16 |
|
constrrtcclem.1 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
17 |
|
constrrtcclem.2 |
⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) |
18 |
8
|
sqcld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
19 |
1 6
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
20 |
1 7
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
21 |
19 20
|
subcld |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) ∈ ℂ ) |
22 |
21
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ∈ ℂ ) |
23 |
21 22
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ∈ ℂ ) |
24 |
13 23
|
eqeltrid |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
25 |
1 5
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
26 |
25
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐷 ) ∈ ℂ ) |
27 |
1 2
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
28 |
25 27
|
addcld |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) ∈ ℂ ) |
29 |
26 28
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
30 |
24 29
|
subcld |
⊢ ( 𝜑 → ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) ∈ ℂ ) |
31 |
1 3
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
32 |
1 4
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
33 |
31 32
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
34 |
33
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
35 |
33 34
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ∈ ℂ ) |
36 |
12 35
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
37 |
27
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
38 |
37 28
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
39 |
36 38
|
subcld |
⊢ ( 𝜑 → ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ∈ ℂ ) |
40 |
30 39
|
subcld |
⊢ ( 𝜑 → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) ∈ ℂ ) |
41 |
26 37
|
subcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
42 |
25 27
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) |
43 |
25 27
|
subcld |
⊢ ( 𝜑 → ( 𝐷 − 𝐴 ) ∈ ℂ ) |
44 |
9
|
necomd |
⊢ ( 𝜑 → 𝐷 ≠ 𝐴 ) |
45 |
25 27 44
|
subne0d |
⊢ ( 𝜑 → ( 𝐷 − 𝐴 ) ≠ 0 ) |
46 |
43 45
|
cjne0d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐷 − 𝐴 ) ) ≠ 0 ) |
47 |
42 46
|
eqnetrrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ≠ 0 ) |
48 |
40 41 47
|
divcld |
⊢ ( 𝜑 → ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
49 |
14 48
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
50 |
49 8
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ ℂ ) |
51 |
25 27
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
52 |
37 51
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
53 |
36 25
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝐷 ) ∈ ℂ ) |
54 |
52 53
|
subcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ∈ ℂ ) |
55 |
26 51
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
56 |
24 27
|
mulcld |
⊢ ( 𝜑 → ( 𝑄 · 𝐴 ) ∈ ℂ ) |
57 |
55 56
|
subcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ∈ ℂ ) |
58 |
54 57
|
subcld |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ∈ ℂ ) |
59 |
58 41 47
|
divcld |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
60 |
59
|
negcld |
⊢ ( 𝜑 → - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
61 |
15 60
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
62 |
18 50 61
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) ) |
63 |
41 18
|
mulcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) ∈ ℂ ) |
64 |
40 8
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ∈ ℂ ) |
65 |
26 37 18
|
subdird |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ) ) |
66 |
30 39 8
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) = ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) − ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) |
67 |
65 66
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) − ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) ) |
68 |
26 18
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) ∈ ℂ ) |
69 |
30 8
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ∈ ℂ ) |
70 |
37 18
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ∈ ℂ ) |
71 |
39 8
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ∈ ℂ ) |
72 |
68 69 70 71
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) − ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) ) |
73 |
8 27
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ∈ ℂ ) |
74 |
8 25
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐷 ) ∈ ℂ ) |
75 |
73 74
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) = ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) |
76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
77 |
73
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ∈ ℂ ) |
78 |
31 32 16
|
subne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ≠ 0 ) |
79 |
33 78
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐶 ) ) ≠ 0 ) |
80 |
10 79
|
eqnetrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) ≠ 0 ) |
81 |
73
|
abs00ad |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) = 0 ↔ ( 𝑋 − 𝐴 ) = 0 ) ) |
82 |
81
|
necon3bid |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) ≠ 0 ↔ ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
83 |
80 82
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ≠ 0 ) |
84 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ↑ 2 ) ) |
85 |
73
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) ↑ 2 ) = ( ( 𝑋 − 𝐴 ) · ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ) ) |
86 |
33
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐶 ) ) ↑ 2 ) = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ) |
87 |
84 85 86
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ) = ( ( 𝐵 − 𝐶 ) · ( ∗ ‘ ( 𝐵 − 𝐶 ) ) ) ) |
88 |
87 12
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( ∗ ‘ ( 𝑋 − 𝐴 ) ) ) = 𝑃 ) |
89 |
73 77 83 88
|
mvllmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐴 ) ) = ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) |
90 |
89 77
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑋 − 𝐴 ) ) ∈ ℂ ) |
91 |
37 90
|
addcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) ∈ ℂ ) |
92 |
91 73 74
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
93 |
36 73 83
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑃 / ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐴 ) ) = 𝑃 ) |
94 |
93
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + ( ( 𝑃 / ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) ) |
95 |
37 73 90 94
|
joinlmuladdmuld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) ) |
96 |
95
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) · ( 𝑋 − 𝐷 ) ) ) |
97 |
37 73
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) ∈ ℂ ) |
98 |
97 36 74
|
adddird |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) + 𝑃 ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) + ( 𝑃 · ( 𝑋 − 𝐷 ) ) ) ) |
99 |
37 73 74
|
mulassd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
100 |
8 27 8 25
|
mulsubd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) = ( ( ( 𝑋 · 𝑋 ) + ( 𝐷 · 𝐴 ) ) − ( ( 𝑋 · 𝐷 ) + ( 𝑋 · 𝐴 ) ) ) ) |
101 |
8
|
sqvald |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
102 |
101
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 𝐷 · 𝐴 ) ) = ( ( 𝑋 · 𝑋 ) + ( 𝐷 · 𝐴 ) ) ) |
103 |
8 25 27
|
adddid |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐷 + 𝐴 ) ) = ( ( 𝑋 · 𝐷 ) + ( 𝑋 · 𝐴 ) ) ) |
104 |
102 103
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝐷 · 𝐴 ) ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( 𝑋 · 𝑋 ) + ( 𝐷 · 𝐴 ) ) − ( ( 𝑋 · 𝐷 ) + ( 𝑋 · 𝐴 ) ) ) ) |
105 |
8 28
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐷 + 𝐴 ) ) ∈ ℂ ) |
106 |
18 51 105
|
addsubd |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝐷 · 𝐴 ) ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) |
107 |
100 104 106
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) = ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) |
108 |
107
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) ) |
109 |
18 105
|
subcld |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ∈ ℂ ) |
110 |
37 109 51
|
adddid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ) |
111 |
99 108 110
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ) |
112 |
36 8 25
|
subdid |
⊢ ( 𝜑 → ( 𝑃 · ( 𝑋 − 𝐷 ) ) = ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) |
113 |
111 112
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) + ( 𝑃 · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
114 |
96 98 113
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( 𝑋 − 𝐴 ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
115 |
8 27
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐴 ) ) = ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐴 ) ) ) |
116 |
115 89
|
eqtr3d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐴 ) ) = ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) |
117 |
8
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
118 |
117 37 90
|
subaddd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐴 ) ) = ( 𝑃 / ( 𝑋 − 𝐴 ) ) ↔ ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) = ( ∗ ‘ 𝑋 ) ) ) |
119 |
116 118
|
mpbid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) = ( ∗ ‘ 𝑋 ) ) |
120 |
119
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) + ( 𝑃 / ( 𝑋 − 𝐴 ) ) ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
121 |
92 114 120
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
122 |
37 109
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ∈ ℂ ) |
123 |
122 52
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ∈ ℂ ) |
124 |
36 8
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝑋 ) ∈ ℂ ) |
125 |
123 124 53
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑃 · 𝑋 ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑃 · 𝑋 ) − ( 𝑃 · 𝐷 ) ) ) ) |
126 |
122 52 124
|
add32d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) ) |
127 |
126
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑃 · 𝑋 ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑃 · 𝐷 ) ) ) |
128 |
121 125 127
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑃 · 𝐷 ) ) ) |
129 |
122 124
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) ∈ ℂ ) |
130 |
129 52 53
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑃 · 𝐷 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) ) |
131 |
38 8
|
mulcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ∈ ℂ ) |
132 |
70 131 124
|
subadd23d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 · 𝑋 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
133 |
37 18 105
|
subdid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ) |
134 |
37 8 28
|
mul12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( 𝑋 · ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) |
135 |
8 38
|
mulcomd |
⊢ ( 𝜑 → ( 𝑋 · ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
136 |
134 135
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
137 |
136
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐴 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
138 |
133 137
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
139 |
138
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑃 · 𝑋 ) ) ) |
140 |
36 38 8
|
subdird |
⊢ ( 𝜑 → ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) = ( ( 𝑃 · 𝑋 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
141 |
140
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 · 𝑋 ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
142 |
132 139 141
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) |
143 |
142
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑃 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) ) |
144 |
128 130 143
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) ) |
145 |
74
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ∈ ℂ ) |
146 |
19 20 17
|
subne0d |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) ≠ 0 ) |
147 |
21 146
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐸 − 𝐹 ) ) ≠ 0 ) |
148 |
11 147
|
eqnetrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) ≠ 0 ) |
149 |
74
|
abs00ad |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) = 0 ↔ ( 𝑋 − 𝐷 ) = 0 ) ) |
150 |
149
|
necon3bid |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) ≠ 0 ↔ ( 𝑋 − 𝐷 ) ≠ 0 ) ) |
151 |
148 150
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 − 𝐷 ) ≠ 0 ) |
152 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) ) |
153 |
74
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) ↑ 2 ) = ( ( 𝑋 − 𝐷 ) · ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ) ) |
154 |
21
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
155 |
152 153 154
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐷 ) · ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
156 |
155 13
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐷 ) · ( ∗ ‘ ( 𝑋 − 𝐷 ) ) ) = 𝑄 ) |
157 |
74 145 151 156
|
mvllmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐷 ) ) = ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) |
158 |
157 145
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑄 / ( 𝑋 − 𝐷 ) ) ∈ ℂ ) |
159 |
26 158
|
addcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) ∈ ℂ ) |
160 |
159 74 73
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
161 |
24 74 151
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑄 / ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐷 ) ) = 𝑄 ) |
162 |
161
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + ( ( 𝑄 / ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) ) |
163 |
26 74 158 162
|
joinlmuladdmuld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) ) |
164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) · ( 𝑋 − 𝐴 ) ) ) |
165 |
26 74
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) ∈ ℂ ) |
166 |
165 24 73
|
adddird |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) + 𝑄 ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) + ( 𝑄 · ( 𝑋 − 𝐴 ) ) ) ) |
167 |
26 74 73
|
mulassd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
168 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
169 |
167 168
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) ) |
170 |
107
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 − 𝐴 ) · ( 𝑋 − 𝐷 ) ) ) = ( ( ∗ ‘ 𝐷 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) ) |
171 |
26 109 51
|
adddid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) + ( 𝐷 · 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
172 |
169 170 171
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
173 |
24 8 27
|
subdid |
⊢ ( 𝜑 → ( 𝑄 · ( 𝑋 − 𝐴 ) ) = ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) |
174 |
172 173
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) + ( 𝑄 · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
175 |
164 166 174
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( 𝑋 − 𝐷 ) ) · ( 𝑋 − 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
176 |
8 25
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐷 ) ) = ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐷 ) ) ) |
177 |
176 157
|
eqtr3d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐷 ) ) = ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) |
178 |
117 26 158
|
subaddd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝑋 ) − ( ∗ ‘ 𝐷 ) ) = ( 𝑄 / ( 𝑋 − 𝐷 ) ) ↔ ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) = ( ∗ ‘ 𝑋 ) ) ) |
179 |
177 178
|
mpbid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) = ( ∗ ‘ 𝑋 ) ) |
180 |
179
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) + ( 𝑄 / ( 𝑋 − 𝐷 ) ) ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) ) |
181 |
160 175 180
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
182 |
26 109
|
mulcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ∈ ℂ ) |
183 |
182 55
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ∈ ℂ ) |
184 |
24 8
|
mulcld |
⊢ ( 𝜑 → ( 𝑄 · 𝑋 ) ∈ ℂ ) |
185 |
183 184 56
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑄 · 𝑋 ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( ( 𝑄 · 𝑋 ) − ( 𝑄 · 𝐴 ) ) ) ) |
186 |
182 55 184
|
add32d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) ) |
187 |
186
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) + ( 𝑄 · 𝑋 ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑄 · 𝐴 ) ) ) |
188 |
181 185 187
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑄 · 𝐴 ) ) ) |
189 |
182 184
|
addcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) ∈ ℂ ) |
190 |
189 55 56
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) ) − ( 𝑄 · 𝐴 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
191 |
29 8
|
mulcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ∈ ℂ ) |
192 |
68 191 184
|
subadd23d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 · 𝑋 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
193 |
26 18 105
|
subdid |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) ) |
194 |
26 8 28
|
mul12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( 𝑋 · ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) ) |
195 |
8 29
|
mulcomd |
⊢ ( 𝜑 → ( 𝑋 · ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
196 |
194 195
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) |
197 |
196
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ∗ ‘ 𝐷 ) · ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
198 |
193 197
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
199 |
198
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) + ( 𝑄 · 𝑋 ) ) ) |
200 |
24 29 8
|
subdird |
⊢ ( 𝜑 → ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) |
201 |
200
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 · 𝑋 ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) · 𝑋 ) ) ) ) |
202 |
192 199 201
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) = ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) |
203 |
202
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( ( 𝑋 ↑ 2 ) − ( 𝑋 · ( 𝐷 + 𝐴 ) ) ) ) + ( 𝑄 · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
204 |
188 190 203
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) · ( ( 𝑋 − 𝐷 ) · ( 𝑋 − 𝐴 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
205 |
76 144 204
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
206 |
142 129
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ∈ ℂ ) |
207 |
202 189
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ∈ ℂ ) |
208 |
206 54 207 57
|
addsubeq4d |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) ) = ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) + ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ↔ ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) ) |
209 |
205 208
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) − ( ( ( ∗ ‘ 𝐴 ) · ( 𝑋 ↑ 2 ) ) + ( ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) · 𝑋 ) ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
210 |
67 72 209
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) + ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) = ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) ) |
211 |
63 64 210
|
mvlraddd |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) · ( 𝑋 ↑ 2 ) ) = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) ) |
212 |
41 18 47 211
|
mvllmuld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) = ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
213 |
58 64 41 47
|
divsubdird |
⊢ ( 𝜑 → ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) ) |
214 |
15
|
eqcomi |
⊢ - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = 𝑁 |
215 |
214
|
a1i |
⊢ ( 𝜑 → - ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = 𝑁 ) |
216 |
59 215
|
negcon1ad |
⊢ ( 𝜑 → - 𝑁 = ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
217 |
216
|
oveq1d |
⊢ ( 𝜑 → ( - 𝑁 − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) = ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) ) |
218 |
213 217
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( ( ( ∗ ‘ 𝐴 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑃 · 𝐷 ) ) − ( ( ( ∗ ‘ 𝐷 ) · ( 𝐷 · 𝐴 ) ) − ( 𝑄 · 𝐴 ) ) ) − ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( - 𝑁 − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) ) |
219 |
40 8 41 47
|
div23d |
⊢ ( 𝜑 → ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) · 𝑋 ) ) |
220 |
14
|
oveq1i |
⊢ ( 𝑀 · 𝑋 ) = ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) · 𝑋 ) |
221 |
219 220
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) = ( 𝑀 · 𝑋 ) ) |
222 |
221
|
oveq2d |
⊢ ( 𝜑 → ( - 𝑁 − ( ( ( ( 𝑄 − ( ( ∗ ‘ 𝐷 ) · ( 𝐷 + 𝐴 ) ) ) − ( 𝑃 − ( ( ∗ ‘ 𝐴 ) · ( 𝐷 + 𝐴 ) ) ) ) · 𝑋 ) / ( ( ∗ ‘ 𝐷 ) − ( ∗ ‘ 𝐴 ) ) ) ) = ( - 𝑁 − ( 𝑀 · 𝑋 ) ) ) |
223 |
212 218 222
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) = ( - 𝑁 − ( 𝑀 · 𝑋 ) ) ) |
224 |
216 59
|
eqeltrd |
⊢ ( 𝜑 → - 𝑁 ∈ ℂ ) |
225 |
18 50 224
|
addlsub |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ↔ ( 𝑋 ↑ 2 ) = ( - 𝑁 − ( 𝑀 · 𝑋 ) ) ) ) |
226 |
223 225
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ) |
227 |
18 50
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) ∈ ℂ ) |
228 |
|
addeq0 |
⊢ ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = 0 ↔ ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ) ) |
229 |
227 61 228
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = 0 ↔ ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) = - 𝑁 ) ) |
230 |
226 229
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( 𝑀 · 𝑋 ) ) + 𝑁 ) = 0 ) |
231 |
62 230
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ) |