Metamath Proof Explorer


Theorem constrrtcclem

Description: In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. Case of non-degenerate circles. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses constrrtcc.s
|- ( ph -> S C_ CC )
constrrtcc.a
|- ( ph -> A e. S )
constrrtcc.b
|- ( ph -> B e. S )
constrrtcc.c
|- ( ph -> C e. S )
constrrtcc.d
|- ( ph -> D e. S )
constrrtcc.e
|- ( ph -> E e. S )
constrrtcc.f
|- ( ph -> F e. S )
constrrtcc.x
|- ( ph -> X e. CC )
constrrtcc.1
|- ( ph -> A =/= D )
constrrtcc.2
|- ( ph -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) )
constrrtcc.3
|- ( ph -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) )
constrrtcc.4
|- P = ( ( B - C ) x. ( * ` ( B - C ) ) )
constrrtcc.5
|- Q = ( ( E - F ) x. ( * ` ( E - F ) ) )
constrrtcc.m
|- M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
constrrtcc.n
|- N = -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
constrrtcclem.1
|- ( ph -> B =/= C )
constrrtcclem.2
|- ( ph -> E =/= F )
Assertion constrrtcclem
|- ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )

Proof

Step Hyp Ref Expression
1 constrrtcc.s
 |-  ( ph -> S C_ CC )
2 constrrtcc.a
 |-  ( ph -> A e. S )
3 constrrtcc.b
 |-  ( ph -> B e. S )
4 constrrtcc.c
 |-  ( ph -> C e. S )
5 constrrtcc.d
 |-  ( ph -> D e. S )
6 constrrtcc.e
 |-  ( ph -> E e. S )
7 constrrtcc.f
 |-  ( ph -> F e. S )
8 constrrtcc.x
 |-  ( ph -> X e. CC )
9 constrrtcc.1
 |-  ( ph -> A =/= D )
10 constrrtcc.2
 |-  ( ph -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) )
11 constrrtcc.3
 |-  ( ph -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) )
12 constrrtcc.4
 |-  P = ( ( B - C ) x. ( * ` ( B - C ) ) )
13 constrrtcc.5
 |-  Q = ( ( E - F ) x. ( * ` ( E - F ) ) )
14 constrrtcc.m
 |-  M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
15 constrrtcc.n
 |-  N = -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
16 constrrtcclem.1
 |-  ( ph -> B =/= C )
17 constrrtcclem.2
 |-  ( ph -> E =/= F )
18 8 sqcld
 |-  ( ph -> ( X ^ 2 ) e. CC )
19 1 6 sseldd
 |-  ( ph -> E e. CC )
20 1 7 sseldd
 |-  ( ph -> F e. CC )
21 19 20 subcld
 |-  ( ph -> ( E - F ) e. CC )
22 21 cjcld
 |-  ( ph -> ( * ` ( E - F ) ) e. CC )
23 21 22 mulcld
 |-  ( ph -> ( ( E - F ) x. ( * ` ( E - F ) ) ) e. CC )
24 13 23 eqeltrid
 |-  ( ph -> Q e. CC )
25 1 5 sseldd
 |-  ( ph -> D e. CC )
26 25 cjcld
 |-  ( ph -> ( * ` D ) e. CC )
27 1 2 sseldd
 |-  ( ph -> A e. CC )
28 25 27 addcld
 |-  ( ph -> ( D + A ) e. CC )
29 26 28 mulcld
 |-  ( ph -> ( ( * ` D ) x. ( D + A ) ) e. CC )
30 24 29 subcld
 |-  ( ph -> ( Q - ( ( * ` D ) x. ( D + A ) ) ) e. CC )
31 1 3 sseldd
 |-  ( ph -> B e. CC )
32 1 4 sseldd
 |-  ( ph -> C e. CC )
33 31 32 subcld
 |-  ( ph -> ( B - C ) e. CC )
34 33 cjcld
 |-  ( ph -> ( * ` ( B - C ) ) e. CC )
35 33 34 mulcld
 |-  ( ph -> ( ( B - C ) x. ( * ` ( B - C ) ) ) e. CC )
36 12 35 eqeltrid
 |-  ( ph -> P e. CC )
37 27 cjcld
 |-  ( ph -> ( * ` A ) e. CC )
38 37 28 mulcld
 |-  ( ph -> ( ( * ` A ) x. ( D + A ) ) e. CC )
39 36 38 subcld
 |-  ( ph -> ( P - ( ( * ` A ) x. ( D + A ) ) ) e. CC )
40 30 39 subcld
 |-  ( ph -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) e. CC )
41 26 37 subcld
 |-  ( ph -> ( ( * ` D ) - ( * ` A ) ) e. CC )
42 25 27 cjsubd
 |-  ( ph -> ( * ` ( D - A ) ) = ( ( * ` D ) - ( * ` A ) ) )
43 25 27 subcld
 |-  ( ph -> ( D - A ) e. CC )
44 9 necomd
 |-  ( ph -> D =/= A )
45 25 27 44 subne0d
 |-  ( ph -> ( D - A ) =/= 0 )
46 43 45 cjne0d
 |-  ( ph -> ( * ` ( D - A ) ) =/= 0 )
47 42 46 eqnetrrd
 |-  ( ph -> ( ( * ` D ) - ( * ` A ) ) =/= 0 )
48 40 41 47 divcld
 |-  ( ph -> ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) e. CC )
49 14 48 eqeltrid
 |-  ( ph -> M e. CC )
50 49 8 mulcld
 |-  ( ph -> ( M x. X ) e. CC )
51 25 27 mulcld
 |-  ( ph -> ( D x. A ) e. CC )
52 37 51 mulcld
 |-  ( ph -> ( ( * ` A ) x. ( D x. A ) ) e. CC )
53 36 25 mulcld
 |-  ( ph -> ( P x. D ) e. CC )
54 52 53 subcld
 |-  ( ph -> ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) e. CC )
55 26 51 mulcld
 |-  ( ph -> ( ( * ` D ) x. ( D x. A ) ) e. CC )
56 24 27 mulcld
 |-  ( ph -> ( Q x. A ) e. CC )
57 55 56 subcld
 |-  ( ph -> ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) e. CC )
58 54 57 subcld
 |-  ( ph -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) e. CC )
59 58 41 47 divcld
 |-  ( ph -> ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) e. CC )
60 59 negcld
 |-  ( ph -> -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) e. CC )
61 15 60 eqeltrid
 |-  ( ph -> N e. CC )
62 18 50 61 addassd
 |-  ( ph -> ( ( ( X ^ 2 ) + ( M x. X ) ) + N ) = ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) )
63 41 18 mulcld
 |-  ( ph -> ( ( ( * ` D ) - ( * ` A ) ) x. ( X ^ 2 ) ) e. CC )
64 40 8 mulcld
 |-  ( ph -> ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) e. CC )
65 26 37 18 subdird
 |-  ( ph -> ( ( ( * ` D ) - ( * ` A ) ) x. ( X ^ 2 ) ) = ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( * ` A ) x. ( X ^ 2 ) ) ) )
66 30 39 8 subdird
 |-  ( ph -> ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) - ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) )
67 65 66 oveq12d
 |-  ( ph -> ( ( ( ( * ` D ) - ( * ` A ) ) x. ( X ^ 2 ) ) + ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) ) = ( ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( * ` A ) x. ( X ^ 2 ) ) ) + ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) - ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) ) )
68 26 18 mulcld
 |-  ( ph -> ( ( * ` D ) x. ( X ^ 2 ) ) e. CC )
69 30 8 mulcld
 |-  ( ph -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) e. CC )
70 37 18 mulcld
 |-  ( ph -> ( ( * ` A ) x. ( X ^ 2 ) ) e. CC )
71 39 8 mulcld
 |-  ( ph -> ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) e. CC )
72 68 69 70 71 addsub4d
 |-  ( ph -> ( ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) - ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) ) = ( ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( * ` A ) x. ( X ^ 2 ) ) ) + ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) - ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) ) )
73 8 27 subcld
 |-  ( ph -> ( X - A ) e. CC )
74 8 25 subcld
 |-  ( ph -> ( X - D ) e. CC )
75 73 74 mulcomd
 |-  ( ph -> ( ( X - A ) x. ( X - D ) ) = ( ( X - D ) x. ( X - A ) ) )
76 75 oveq2d
 |-  ( ph -> ( ( * ` X ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( * ` X ) x. ( ( X - D ) x. ( X - A ) ) ) )
77 73 cjcld
 |-  ( ph -> ( * ` ( X - A ) ) e. CC )
78 31 32 16 subne0d
 |-  ( ph -> ( B - C ) =/= 0 )
79 33 78 absne0d
 |-  ( ph -> ( abs ` ( B - C ) ) =/= 0 )
80 10 79 eqnetrd
 |-  ( ph -> ( abs ` ( X - A ) ) =/= 0 )
81 73 abs00ad
 |-  ( ph -> ( ( abs ` ( X - A ) ) = 0 <-> ( X - A ) = 0 ) )
82 81 necon3bid
 |-  ( ph -> ( ( abs ` ( X - A ) ) =/= 0 <-> ( X - A ) =/= 0 ) )
83 80 82 mpbid
 |-  ( ph -> ( X - A ) =/= 0 )
84 10 oveq1d
 |-  ( ph -> ( ( abs ` ( X - A ) ) ^ 2 ) = ( ( abs ` ( B - C ) ) ^ 2 ) )
85 73 absvalsqd
 |-  ( ph -> ( ( abs ` ( X - A ) ) ^ 2 ) = ( ( X - A ) x. ( * ` ( X - A ) ) ) )
86 33 absvalsqd
 |-  ( ph -> ( ( abs ` ( B - C ) ) ^ 2 ) = ( ( B - C ) x. ( * ` ( B - C ) ) ) )
87 84 85 86 3eqtr3d
 |-  ( ph -> ( ( X - A ) x. ( * ` ( X - A ) ) ) = ( ( B - C ) x. ( * ` ( B - C ) ) ) )
88 87 12 eqtr4di
 |-  ( ph -> ( ( X - A ) x. ( * ` ( X - A ) ) ) = P )
89 73 77 83 88 mvllmuld
 |-  ( ph -> ( * ` ( X - A ) ) = ( P / ( X - A ) ) )
90 89 77 eqeltrrd
 |-  ( ph -> ( P / ( X - A ) ) e. CC )
91 37 90 addcld
 |-  ( ph -> ( ( * ` A ) + ( P / ( X - A ) ) ) e. CC )
92 91 73 74 mulassd
 |-  ( ph -> ( ( ( ( * ` A ) + ( P / ( X - A ) ) ) x. ( X - A ) ) x. ( X - D ) ) = ( ( ( * ` A ) + ( P / ( X - A ) ) ) x. ( ( X - A ) x. ( X - D ) ) ) )
93 36 73 83 divcan1d
 |-  ( ph -> ( ( P / ( X - A ) ) x. ( X - A ) ) = P )
94 93 oveq2d
 |-  ( ph -> ( ( ( * ` A ) x. ( X - A ) ) + ( ( P / ( X - A ) ) x. ( X - A ) ) ) = ( ( ( * ` A ) x. ( X - A ) ) + P ) )
95 37 73 90 94 joinlmuladdmuld
 |-  ( ph -> ( ( ( * ` A ) + ( P / ( X - A ) ) ) x. ( X - A ) ) = ( ( ( * ` A ) x. ( X - A ) ) + P ) )
96 95 oveq1d
 |-  ( ph -> ( ( ( ( * ` A ) + ( P / ( X - A ) ) ) x. ( X - A ) ) x. ( X - D ) ) = ( ( ( ( * ` A ) x. ( X - A ) ) + P ) x. ( X - D ) ) )
97 37 73 mulcld
 |-  ( ph -> ( ( * ` A ) x. ( X - A ) ) e. CC )
98 97 36 74 adddird
 |-  ( ph -> ( ( ( ( * ` A ) x. ( X - A ) ) + P ) x. ( X - D ) ) = ( ( ( ( * ` A ) x. ( X - A ) ) x. ( X - D ) ) + ( P x. ( X - D ) ) ) )
99 37 73 74 mulassd
 |-  ( ph -> ( ( ( * ` A ) x. ( X - A ) ) x. ( X - D ) ) = ( ( * ` A ) x. ( ( X - A ) x. ( X - D ) ) ) )
100 8 27 8 25 mulsubd
 |-  ( ph -> ( ( X - A ) x. ( X - D ) ) = ( ( ( X x. X ) + ( D x. A ) ) - ( ( X x. D ) + ( X x. A ) ) ) )
101 8 sqvald
 |-  ( ph -> ( X ^ 2 ) = ( X x. X ) )
102 101 oveq1d
 |-  ( ph -> ( ( X ^ 2 ) + ( D x. A ) ) = ( ( X x. X ) + ( D x. A ) ) )
103 8 25 27 adddid
 |-  ( ph -> ( X x. ( D + A ) ) = ( ( X x. D ) + ( X x. A ) ) )
104 102 103 oveq12d
 |-  ( ph -> ( ( ( X ^ 2 ) + ( D x. A ) ) - ( X x. ( D + A ) ) ) = ( ( ( X x. X ) + ( D x. A ) ) - ( ( X x. D ) + ( X x. A ) ) ) )
105 8 28 mulcld
 |-  ( ph -> ( X x. ( D + A ) ) e. CC )
106 18 51 105 addsubd
 |-  ( ph -> ( ( ( X ^ 2 ) + ( D x. A ) ) - ( X x. ( D + A ) ) ) = ( ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) + ( D x. A ) ) )
107 100 104 106 3eqtr2d
 |-  ( ph -> ( ( X - A ) x. ( X - D ) ) = ( ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) + ( D x. A ) ) )
108 107 oveq2d
 |-  ( ph -> ( ( * ` A ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( * ` A ) x. ( ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) + ( D x. A ) ) ) )
109 18 105 subcld
 |-  ( ph -> ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) e. CC )
110 37 109 51 adddid
 |-  ( ph -> ( ( * ` A ) x. ( ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) + ( D x. A ) ) ) = ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) )
111 99 108 110 3eqtrd
 |-  ( ph -> ( ( ( * ` A ) x. ( X - A ) ) x. ( X - D ) ) = ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) )
112 36 8 25 subdid
 |-  ( ph -> ( P x. ( X - D ) ) = ( ( P x. X ) - ( P x. D ) ) )
113 111 112 oveq12d
 |-  ( ph -> ( ( ( ( * ` A ) x. ( X - A ) ) x. ( X - D ) ) + ( P x. ( X - D ) ) ) = ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) + ( ( P x. X ) - ( P x. D ) ) ) )
114 96 98 113 3eqtrd
 |-  ( ph -> ( ( ( ( * ` A ) + ( P / ( X - A ) ) ) x. ( X - A ) ) x. ( X - D ) ) = ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) + ( ( P x. X ) - ( P x. D ) ) ) )
115 8 27 cjsubd
 |-  ( ph -> ( * ` ( X - A ) ) = ( ( * ` X ) - ( * ` A ) ) )
116 115 89 eqtr3d
 |-  ( ph -> ( ( * ` X ) - ( * ` A ) ) = ( P / ( X - A ) ) )
117 8 cjcld
 |-  ( ph -> ( * ` X ) e. CC )
118 117 37 90 subaddd
 |-  ( ph -> ( ( ( * ` X ) - ( * ` A ) ) = ( P / ( X - A ) ) <-> ( ( * ` A ) + ( P / ( X - A ) ) ) = ( * ` X ) ) )
119 116 118 mpbid
 |-  ( ph -> ( ( * ` A ) + ( P / ( X - A ) ) ) = ( * ` X ) )
120 119 oveq1d
 |-  ( ph -> ( ( ( * ` A ) + ( P / ( X - A ) ) ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( * ` X ) x. ( ( X - A ) x. ( X - D ) ) ) )
121 92 114 120 3eqtr3rd
 |-  ( ph -> ( ( * ` X ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) + ( ( P x. X ) - ( P x. D ) ) ) )
122 37 109 mulcld
 |-  ( ph -> ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) e. CC )
123 122 52 addcld
 |-  ( ph -> ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) e. CC )
124 36 8 mulcld
 |-  ( ph -> ( P x. X ) e. CC )
125 123 124 53 addsubassd
 |-  ( ph -> ( ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) + ( P x. X ) ) - ( P x. D ) ) = ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) + ( ( P x. X ) - ( P x. D ) ) ) )
126 122 52 124 add32d
 |-  ( ph -> ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) + ( P x. X ) ) = ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) + ( ( * ` A ) x. ( D x. A ) ) ) )
127 126 oveq1d
 |-  ( ph -> ( ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` A ) x. ( D x. A ) ) ) + ( P x. X ) ) - ( P x. D ) ) = ( ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) + ( ( * ` A ) x. ( D x. A ) ) ) - ( P x. D ) ) )
128 121 125 127 3eqtr2d
 |-  ( ph -> ( ( * ` X ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) + ( ( * ` A ) x. ( D x. A ) ) ) - ( P x. D ) ) )
129 122 124 addcld
 |-  ( ph -> ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) e. CC )
130 129 52 53 addsubassd
 |-  ( ph -> ( ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) + ( ( * ` A ) x. ( D x. A ) ) ) - ( P x. D ) ) = ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) + ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) ) )
131 38 8 mulcld
 |-  ( ph -> ( ( ( * ` A ) x. ( D + A ) ) x. X ) e. CC )
132 70 131 124 subadd23d
 |-  ( ph -> ( ( ( ( * ` A ) x. ( X ^ 2 ) ) - ( ( ( * ` A ) x. ( D + A ) ) x. X ) ) + ( P x. X ) ) = ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P x. X ) - ( ( ( * ` A ) x. ( D + A ) ) x. X ) ) ) )
133 37 18 105 subdid
 |-  ( ph -> ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) = ( ( ( * ` A ) x. ( X ^ 2 ) ) - ( ( * ` A ) x. ( X x. ( D + A ) ) ) ) )
134 37 8 28 mul12d
 |-  ( ph -> ( ( * ` A ) x. ( X x. ( D + A ) ) ) = ( X x. ( ( * ` A ) x. ( D + A ) ) ) )
135 8 38 mulcomd
 |-  ( ph -> ( X x. ( ( * ` A ) x. ( D + A ) ) ) = ( ( ( * ` A ) x. ( D + A ) ) x. X ) )
136 134 135 eqtrd
 |-  ( ph -> ( ( * ` A ) x. ( X x. ( D + A ) ) ) = ( ( ( * ` A ) x. ( D + A ) ) x. X ) )
137 136 oveq2d
 |-  ( ph -> ( ( ( * ` A ) x. ( X ^ 2 ) ) - ( ( * ` A ) x. ( X x. ( D + A ) ) ) ) = ( ( ( * ` A ) x. ( X ^ 2 ) ) - ( ( ( * ` A ) x. ( D + A ) ) x. X ) ) )
138 133 137 eqtrd
 |-  ( ph -> ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) = ( ( ( * ` A ) x. ( X ^ 2 ) ) - ( ( ( * ` A ) x. ( D + A ) ) x. X ) ) )
139 138 oveq1d
 |-  ( ph -> ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) = ( ( ( ( * ` A ) x. ( X ^ 2 ) ) - ( ( ( * ` A ) x. ( D + A ) ) x. X ) ) + ( P x. X ) ) )
140 36 38 8 subdird
 |-  ( ph -> ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) = ( ( P x. X ) - ( ( ( * ` A ) x. ( D + A ) ) x. X ) ) )
141 140 oveq2d
 |-  ( ph -> ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) = ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P x. X ) - ( ( ( * ` A ) x. ( D + A ) ) x. X ) ) ) )
142 132 139 141 3eqtr4d
 |-  ( ph -> ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) = ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) )
143 142 oveq1d
 |-  ( ph -> ( ( ( ( * ` A ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( P x. X ) ) + ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) ) = ( ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) ) )
144 128 130 143 3eqtrd
 |-  ( ph -> ( ( * ` X ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) ) )
145 74 cjcld
 |-  ( ph -> ( * ` ( X - D ) ) e. CC )
146 19 20 17 subne0d
 |-  ( ph -> ( E - F ) =/= 0 )
147 21 146 absne0d
 |-  ( ph -> ( abs ` ( E - F ) ) =/= 0 )
148 11 147 eqnetrd
 |-  ( ph -> ( abs ` ( X - D ) ) =/= 0 )
149 74 abs00ad
 |-  ( ph -> ( ( abs ` ( X - D ) ) = 0 <-> ( X - D ) = 0 ) )
150 149 necon3bid
 |-  ( ph -> ( ( abs ` ( X - D ) ) =/= 0 <-> ( X - D ) =/= 0 ) )
151 148 150 mpbid
 |-  ( ph -> ( X - D ) =/= 0 )
152 11 oveq1d
 |-  ( ph -> ( ( abs ` ( X - D ) ) ^ 2 ) = ( ( abs ` ( E - F ) ) ^ 2 ) )
153 74 absvalsqd
 |-  ( ph -> ( ( abs ` ( X - D ) ) ^ 2 ) = ( ( X - D ) x. ( * ` ( X - D ) ) ) )
154 21 absvalsqd
 |-  ( ph -> ( ( abs ` ( E - F ) ) ^ 2 ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) )
155 152 153 154 3eqtr3d
 |-  ( ph -> ( ( X - D ) x. ( * ` ( X - D ) ) ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) )
156 155 13 eqtr4di
 |-  ( ph -> ( ( X - D ) x. ( * ` ( X - D ) ) ) = Q )
157 74 145 151 156 mvllmuld
 |-  ( ph -> ( * ` ( X - D ) ) = ( Q / ( X - D ) ) )
158 157 145 eqeltrrd
 |-  ( ph -> ( Q / ( X - D ) ) e. CC )
159 26 158 addcld
 |-  ( ph -> ( ( * ` D ) + ( Q / ( X - D ) ) ) e. CC )
160 159 74 73 mulassd
 |-  ( ph -> ( ( ( ( * ` D ) + ( Q / ( X - D ) ) ) x. ( X - D ) ) x. ( X - A ) ) = ( ( ( * ` D ) + ( Q / ( X - D ) ) ) x. ( ( X - D ) x. ( X - A ) ) ) )
161 24 74 151 divcan1d
 |-  ( ph -> ( ( Q / ( X - D ) ) x. ( X - D ) ) = Q )
162 161 oveq2d
 |-  ( ph -> ( ( ( * ` D ) x. ( X - D ) ) + ( ( Q / ( X - D ) ) x. ( X - D ) ) ) = ( ( ( * ` D ) x. ( X - D ) ) + Q ) )
163 26 74 158 162 joinlmuladdmuld
 |-  ( ph -> ( ( ( * ` D ) + ( Q / ( X - D ) ) ) x. ( X - D ) ) = ( ( ( * ` D ) x. ( X - D ) ) + Q ) )
164 163 oveq1d
 |-  ( ph -> ( ( ( ( * ` D ) + ( Q / ( X - D ) ) ) x. ( X - D ) ) x. ( X - A ) ) = ( ( ( ( * ` D ) x. ( X - D ) ) + Q ) x. ( X - A ) ) )
165 26 74 mulcld
 |-  ( ph -> ( ( * ` D ) x. ( X - D ) ) e. CC )
166 165 24 73 adddird
 |-  ( ph -> ( ( ( ( * ` D ) x. ( X - D ) ) + Q ) x. ( X - A ) ) = ( ( ( ( * ` D ) x. ( X - D ) ) x. ( X - A ) ) + ( Q x. ( X - A ) ) ) )
167 26 74 73 mulassd
 |-  ( ph -> ( ( ( * ` D ) x. ( X - D ) ) x. ( X - A ) ) = ( ( * ` D ) x. ( ( X - D ) x. ( X - A ) ) ) )
168 75 oveq2d
 |-  ( ph -> ( ( * ` D ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( * ` D ) x. ( ( X - D ) x. ( X - A ) ) ) )
169 167 168 eqtr4d
 |-  ( ph -> ( ( ( * ` D ) x. ( X - D ) ) x. ( X - A ) ) = ( ( * ` D ) x. ( ( X - A ) x. ( X - D ) ) ) )
170 107 oveq2d
 |-  ( ph -> ( ( * ` D ) x. ( ( X - A ) x. ( X - D ) ) ) = ( ( * ` D ) x. ( ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) + ( D x. A ) ) ) )
171 26 109 51 adddid
 |-  ( ph -> ( ( * ` D ) x. ( ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) + ( D x. A ) ) ) = ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) )
172 169 170 171 3eqtrd
 |-  ( ph -> ( ( ( * ` D ) x. ( X - D ) ) x. ( X - A ) ) = ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) )
173 24 8 27 subdid
 |-  ( ph -> ( Q x. ( X - A ) ) = ( ( Q x. X ) - ( Q x. A ) ) )
174 172 173 oveq12d
 |-  ( ph -> ( ( ( ( * ` D ) x. ( X - D ) ) x. ( X - A ) ) + ( Q x. ( X - A ) ) ) = ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) + ( ( Q x. X ) - ( Q x. A ) ) ) )
175 164 166 174 3eqtrd
 |-  ( ph -> ( ( ( ( * ` D ) + ( Q / ( X - D ) ) ) x. ( X - D ) ) x. ( X - A ) ) = ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) + ( ( Q x. X ) - ( Q x. A ) ) ) )
176 8 25 cjsubd
 |-  ( ph -> ( * ` ( X - D ) ) = ( ( * ` X ) - ( * ` D ) ) )
177 176 157 eqtr3d
 |-  ( ph -> ( ( * ` X ) - ( * ` D ) ) = ( Q / ( X - D ) ) )
178 117 26 158 subaddd
 |-  ( ph -> ( ( ( * ` X ) - ( * ` D ) ) = ( Q / ( X - D ) ) <-> ( ( * ` D ) + ( Q / ( X - D ) ) ) = ( * ` X ) ) )
179 177 178 mpbid
 |-  ( ph -> ( ( * ` D ) + ( Q / ( X - D ) ) ) = ( * ` X ) )
180 179 oveq1d
 |-  ( ph -> ( ( ( * ` D ) + ( Q / ( X - D ) ) ) x. ( ( X - D ) x. ( X - A ) ) ) = ( ( * ` X ) x. ( ( X - D ) x. ( X - A ) ) ) )
181 160 175 180 3eqtr3rd
 |-  ( ph -> ( ( * ` X ) x. ( ( X - D ) x. ( X - A ) ) ) = ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) + ( ( Q x. X ) - ( Q x. A ) ) ) )
182 26 109 mulcld
 |-  ( ph -> ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) e. CC )
183 182 55 addcld
 |-  ( ph -> ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) e. CC )
184 24 8 mulcld
 |-  ( ph -> ( Q x. X ) e. CC )
185 183 184 56 addsubassd
 |-  ( ph -> ( ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) + ( Q x. X ) ) - ( Q x. A ) ) = ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) + ( ( Q x. X ) - ( Q x. A ) ) ) )
186 182 55 184 add32d
 |-  ( ph -> ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) + ( Q x. X ) ) = ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) + ( ( * ` D ) x. ( D x. A ) ) ) )
187 186 oveq1d
 |-  ( ph -> ( ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( ( * ` D ) x. ( D x. A ) ) ) + ( Q x. X ) ) - ( Q x. A ) ) = ( ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) + ( ( * ` D ) x. ( D x. A ) ) ) - ( Q x. A ) ) )
188 181 185 187 3eqtr2d
 |-  ( ph -> ( ( * ` X ) x. ( ( X - D ) x. ( X - A ) ) ) = ( ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) + ( ( * ` D ) x. ( D x. A ) ) ) - ( Q x. A ) ) )
189 182 184 addcld
 |-  ( ph -> ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) e. CC )
190 189 55 56 addsubassd
 |-  ( ph -> ( ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) + ( ( * ` D ) x. ( D x. A ) ) ) - ( Q x. A ) ) = ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) + ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) )
191 29 8 mulcld
 |-  ( ph -> ( ( ( * ` D ) x. ( D + A ) ) x. X ) e. CC )
192 68 191 184 subadd23d
 |-  ( ph -> ( ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( ( * ` D ) x. ( D + A ) ) x. X ) ) + ( Q x. X ) ) = ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q x. X ) - ( ( ( * ` D ) x. ( D + A ) ) x. X ) ) ) )
193 26 18 105 subdid
 |-  ( ph -> ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) = ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( * ` D ) x. ( X x. ( D + A ) ) ) ) )
194 26 8 28 mul12d
 |-  ( ph -> ( ( * ` D ) x. ( X x. ( D + A ) ) ) = ( X x. ( ( * ` D ) x. ( D + A ) ) ) )
195 8 29 mulcomd
 |-  ( ph -> ( X x. ( ( * ` D ) x. ( D + A ) ) ) = ( ( ( * ` D ) x. ( D + A ) ) x. X ) )
196 194 195 eqtrd
 |-  ( ph -> ( ( * ` D ) x. ( X x. ( D + A ) ) ) = ( ( ( * ` D ) x. ( D + A ) ) x. X ) )
197 196 oveq2d
 |-  ( ph -> ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( * ` D ) x. ( X x. ( D + A ) ) ) ) = ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( ( * ` D ) x. ( D + A ) ) x. X ) ) )
198 193 197 eqtrd
 |-  ( ph -> ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) = ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( ( * ` D ) x. ( D + A ) ) x. X ) ) )
199 198 oveq1d
 |-  ( ph -> ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) = ( ( ( ( * ` D ) x. ( X ^ 2 ) ) - ( ( ( * ` D ) x. ( D + A ) ) x. X ) ) + ( Q x. X ) ) )
200 24 29 8 subdird
 |-  ( ph -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) = ( ( Q x. X ) - ( ( ( * ` D ) x. ( D + A ) ) x. X ) ) )
201 200 oveq2d
 |-  ( ph -> ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) = ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q x. X ) - ( ( ( * ` D ) x. ( D + A ) ) x. X ) ) ) )
202 192 199 201 3eqtr4d
 |-  ( ph -> ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) = ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) )
203 202 oveq1d
 |-  ( ph -> ( ( ( ( * ` D ) x. ( ( X ^ 2 ) - ( X x. ( D + A ) ) ) ) + ( Q x. X ) ) + ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) )
204 188 190 203 3eqtrd
 |-  ( ph -> ( ( * ` X ) x. ( ( X - D ) x. ( X - A ) ) ) = ( ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) )
205 76 144 204 3eqtr3d
 |-  ( ph -> ( ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) ) = ( ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) )
206 142 129 eqeltrrd
 |-  ( ph -> ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) e. CC )
207 202 189 eqeltrrd
 |-  ( ph -> ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) e. CC )
208 206 54 207 57 addsubeq4d
 |-  ( ph -> ( ( ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) ) = ( ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) + ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) <-> ( ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) - ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) ) )
209 205 208 mpbid
 |-  ( ph -> ( ( ( ( * ` D ) x. ( X ^ 2 ) ) + ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) x. X ) ) - ( ( ( * ` A ) x. ( X ^ 2 ) ) + ( ( P - ( ( * ` A ) x. ( D + A ) ) ) x. X ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) )
210 67 72 209 3eqtr2d
 |-  ( ph -> ( ( ( ( * ` D ) - ( * ` A ) ) x. ( X ^ 2 ) ) + ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) )
211 63 64 210 mvlraddd
 |-  ( ph -> ( ( ( * ` D ) - ( * ` A ) ) x. ( X ^ 2 ) ) = ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) - ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) ) )
212 41 18 47 211 mvllmuld
 |-  ( ph -> ( X ^ 2 ) = ( ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) - ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
213 58 64 41 47 divsubdird
 |-  ( ph -> ( ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) - ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) - ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) / ( ( * ` D ) - ( * ` A ) ) ) ) )
214 15 eqcomi
 |-  -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = N
215 214 a1i
 |-  ( ph -> -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = N )
216 59 215 negcon1ad
 |-  ( ph -> -u N = ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
217 216 oveq1d
 |-  ( ph -> ( -u N - ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) / ( ( * ` D ) - ( * ` A ) ) ) ) = ( ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) - ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) / ( ( * ` D ) - ( * ` A ) ) ) ) )
218 213 217 eqtr4d
 |-  ( ph -> ( ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) - ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( -u N - ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) / ( ( * ` D ) - ( * ` A ) ) ) ) )
219 40 8 41 47 div23d
 |-  ( ph -> ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) / ( ( * ` D ) - ( * ` A ) ) ) = ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) x. X ) )
220 14 oveq1i
 |-  ( M x. X ) = ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) x. X )
221 219 220 eqtr4di
 |-  ( ph -> ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) / ( ( * ` D ) - ( * ` A ) ) ) = ( M x. X ) )
222 221 oveq2d
 |-  ( ph -> ( -u N - ( ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) x. X ) / ( ( * ` D ) - ( * ` A ) ) ) ) = ( -u N - ( M x. X ) ) )
223 212 218 222 3eqtrd
 |-  ( ph -> ( X ^ 2 ) = ( -u N - ( M x. X ) ) )
224 216 59 eqeltrd
 |-  ( ph -> -u N e. CC )
225 18 50 224 addlsub
 |-  ( ph -> ( ( ( X ^ 2 ) + ( M x. X ) ) = -u N <-> ( X ^ 2 ) = ( -u N - ( M x. X ) ) ) )
226 223 225 mpbird
 |-  ( ph -> ( ( X ^ 2 ) + ( M x. X ) ) = -u N )
227 18 50 addcld
 |-  ( ph -> ( ( X ^ 2 ) + ( M x. X ) ) e. CC )
228 addeq0
 |-  ( ( ( ( X ^ 2 ) + ( M x. X ) ) e. CC /\ N e. CC ) -> ( ( ( ( X ^ 2 ) + ( M x. X ) ) + N ) = 0 <-> ( ( X ^ 2 ) + ( M x. X ) ) = -u N ) )
229 227 61 228 syl2anc
 |-  ( ph -> ( ( ( ( X ^ 2 ) + ( M x. X ) ) + N ) = 0 <-> ( ( X ^ 2 ) + ( M x. X ) ) = -u N ) )
230 226 229 mpbird
 |-  ( ph -> ( ( ( X ^ 2 ) + ( M x. X ) ) + N ) = 0 )
231 62 230 eqtr3d
 |-  ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )