Step |
Hyp |
Ref |
Expression |
1 |
|
constrrtcc.s |
|- ( ph -> S C_ CC ) |
2 |
|
constrrtcc.a |
|- ( ph -> A e. S ) |
3 |
|
constrrtcc.b |
|- ( ph -> B e. S ) |
4 |
|
constrrtcc.c |
|- ( ph -> C e. S ) |
5 |
|
constrrtcc.d |
|- ( ph -> D e. S ) |
6 |
|
constrrtcc.e |
|- ( ph -> E e. S ) |
7 |
|
constrrtcc.f |
|- ( ph -> F e. S ) |
8 |
|
constrrtcc.x |
|- ( ph -> X e. CC ) |
9 |
|
constrrtcc.1 |
|- ( ph -> A =/= D ) |
10 |
|
constrrtcc.2 |
|- ( ph -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) ) |
11 |
|
constrrtcc.3 |
|- ( ph -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) |
12 |
|
constrrtcc.4 |
|- P = ( ( B - C ) x. ( * ` ( B - C ) ) ) |
13 |
|
constrrtcc.5 |
|- Q = ( ( E - F ) x. ( * ` ( E - F ) ) ) |
14 |
|
constrrtcc.m |
|- M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) |
15 |
|
constrrtcc.n |
|- N = -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) |
16 |
14
|
a1i |
|- ( ( ph /\ B = C ) -> M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) ) |
17 |
1 6
|
sseldd |
|- ( ph -> E e. CC ) |
18 |
1 7
|
sseldd |
|- ( ph -> F e. CC ) |
19 |
17 18
|
subcld |
|- ( ph -> ( E - F ) e. CC ) |
20 |
19
|
adantr |
|- ( ( ph /\ B = C ) -> ( E - F ) e. CC ) |
21 |
20
|
absvalsqd |
|- ( ( ph /\ B = C ) -> ( ( abs ` ( E - F ) ) ^ 2 ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) ) |
22 |
13 21
|
eqtr4id |
|- ( ( ph /\ B = C ) -> Q = ( ( abs ` ( E - F ) ) ^ 2 ) ) |
23 |
8
|
adantr |
|- ( ( ph /\ B = C ) -> X e. CC ) |
24 |
1 2
|
sseldd |
|- ( ph -> A e. CC ) |
25 |
24
|
adantr |
|- ( ( ph /\ B = C ) -> A e. CC ) |
26 |
8 24
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
27 |
26
|
adantr |
|- ( ( ph /\ B = C ) -> ( X - A ) e. CC ) |
28 |
10
|
adantr |
|- ( ( ph /\ B = C ) -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) ) |
29 |
1 3
|
sseldd |
|- ( ph -> B e. CC ) |
30 |
29
|
adantr |
|- ( ( ph /\ B = C ) -> B e. CC ) |
31 |
|
simpr |
|- ( ( ph /\ B = C ) -> B = C ) |
32 |
30 31
|
subeq0bd |
|- ( ( ph /\ B = C ) -> ( B - C ) = 0 ) |
33 |
32
|
abs00bd |
|- ( ( ph /\ B = C ) -> ( abs ` ( B - C ) ) = 0 ) |
34 |
28 33
|
eqtrd |
|- ( ( ph /\ B = C ) -> ( abs ` ( X - A ) ) = 0 ) |
35 |
27 34
|
abs00d |
|- ( ( ph /\ B = C ) -> ( X - A ) = 0 ) |
36 |
23 25 35
|
subeq0d |
|- ( ( ph /\ B = C ) -> X = A ) |
37 |
36
|
fvoveq1d |
|- ( ( ph /\ B = C ) -> ( abs ` ( X - D ) ) = ( abs ` ( A - D ) ) ) |
38 |
11
|
adantr |
|- ( ( ph /\ B = C ) -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) |
39 |
1 5
|
sseldd |
|- ( ph -> D e. CC ) |
40 |
39
|
adantr |
|- ( ( ph /\ B = C ) -> D e. CC ) |
41 |
25 40
|
abssubd |
|- ( ( ph /\ B = C ) -> ( abs ` ( A - D ) ) = ( abs ` ( D - A ) ) ) |
42 |
37 38 41
|
3eqtr3d |
|- ( ( ph /\ B = C ) -> ( abs ` ( E - F ) ) = ( abs ` ( D - A ) ) ) |
43 |
42
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( ( abs ` ( E - F ) ) ^ 2 ) = ( ( abs ` ( D - A ) ) ^ 2 ) ) |
44 |
39 24
|
subcld |
|- ( ph -> ( D - A ) e. CC ) |
45 |
44
|
absvalsqd |
|- ( ph -> ( ( abs ` ( D - A ) ) ^ 2 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ B = C ) -> ( ( abs ` ( D - A ) ) ^ 2 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
47 |
22 43 46
|
3eqtrd |
|- ( ( ph /\ B = C ) -> Q = ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
48 |
47
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( Q - ( ( * ` D ) x. ( D + A ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` D ) x. ( D + A ) ) ) ) |
49 |
32
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( ( B - C ) x. ( * ` ( B - C ) ) ) = ( 0 x. ( * ` ( B - C ) ) ) ) |
50 |
1 4
|
sseldd |
|- ( ph -> C e. CC ) |
51 |
29 50
|
subcld |
|- ( ph -> ( B - C ) e. CC ) |
52 |
51
|
cjcld |
|- ( ph -> ( * ` ( B - C ) ) e. CC ) |
53 |
52
|
adantr |
|- ( ( ph /\ B = C ) -> ( * ` ( B - C ) ) e. CC ) |
54 |
53
|
mul02d |
|- ( ( ph /\ B = C ) -> ( 0 x. ( * ` ( B - C ) ) ) = 0 ) |
55 |
49 54
|
eqtrd |
|- ( ( ph /\ B = C ) -> ( ( B - C ) x. ( * ` ( B - C ) ) ) = 0 ) |
56 |
12 55
|
eqtrid |
|- ( ( ph /\ B = C ) -> P = 0 ) |
57 |
56
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( P - ( ( * ` A ) x. ( D + A ) ) ) = ( 0 - ( ( * ` A ) x. ( D + A ) ) ) ) |
58 |
48 57
|
oveq12d |
|- ( ( ph /\ B = C ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` D ) x. ( D + A ) ) ) - ( 0 - ( ( * ` A ) x. ( D + A ) ) ) ) ) |
59 |
44
|
adantr |
|- ( ( ph /\ B = C ) -> ( D - A ) e. CC ) |
60 |
59
|
cjcld |
|- ( ( ph /\ B = C ) -> ( * ` ( D - A ) ) e. CC ) |
61 |
59 60
|
mulcld |
|- ( ( ph /\ B = C ) -> ( ( D - A ) x. ( * ` ( D - A ) ) ) e. CC ) |
62 |
40
|
cjcld |
|- ( ( ph /\ B = C ) -> ( * ` D ) e. CC ) |
63 |
40 25
|
addcld |
|- ( ( ph /\ B = C ) -> ( D + A ) e. CC ) |
64 |
62 63
|
mulcld |
|- ( ( ph /\ B = C ) -> ( ( * ` D ) x. ( D + A ) ) e. CC ) |
65 |
|
0cnd |
|- ( ( ph /\ B = C ) -> 0 e. CC ) |
66 |
25
|
cjcld |
|- ( ( ph /\ B = C ) -> ( * ` A ) e. CC ) |
67 |
66 63
|
mulcld |
|- ( ( ph /\ B = C ) -> ( ( * ` A ) x. ( D + A ) ) e. CC ) |
68 |
61 64 65 67
|
sub4d |
|- ( ( ph /\ B = C ) -> ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` D ) x. ( D + A ) ) ) - ( 0 - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - 0 ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) ) |
69 |
61
|
subid1d |
|- ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - 0 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
70 |
39 24
|
cjsubd |
|- ( ph -> ( * ` ( D - A ) ) = ( ( * ` D ) - ( * ` A ) ) ) |
71 |
70
|
oveq1d |
|- ( ph -> ( ( * ` ( D - A ) ) x. ( D + A ) ) = ( ( ( * ` D ) - ( * ` A ) ) x. ( D + A ) ) ) |
72 |
44
|
cjcld |
|- ( ph -> ( * ` ( D - A ) ) e. CC ) |
73 |
39 24
|
addcld |
|- ( ph -> ( D + A ) e. CC ) |
74 |
72 73
|
mulcomd |
|- ( ph -> ( ( * ` ( D - A ) ) x. ( D + A ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) ) |
75 |
39
|
cjcld |
|- ( ph -> ( * ` D ) e. CC ) |
76 |
24
|
cjcld |
|- ( ph -> ( * ` A ) e. CC ) |
77 |
75 76 73
|
subdird |
|- ( ph -> ( ( ( * ` D ) - ( * ` A ) ) x. ( D + A ) ) = ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) |
78 |
71 74 77
|
3eqtr3rd |
|- ( ph -> ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) ) |
79 |
78
|
adantr |
|- ( ( ph /\ B = C ) -> ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) ) |
80 |
69 79
|
oveq12d |
|- ( ( ph /\ B = C ) -> ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - 0 ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) ) |
81 |
58 68 80
|
3eqtrd |
|- ( ( ph /\ B = C ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) ) |
82 |
59 63 60
|
subdird |
|- ( ( ph /\ B = C ) -> ( ( ( D - A ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) ) |
83 |
63 59
|
negsubdi2d |
|- ( ( ph /\ B = C ) -> -u ( ( D + A ) - ( D - A ) ) = ( ( D - A ) - ( D + A ) ) ) |
84 |
40 25 25
|
pnncand |
|- ( ( ph /\ B = C ) -> ( ( D + A ) - ( D - A ) ) = ( A + A ) ) |
85 |
25
|
2timesd |
|- ( ( ph /\ B = C ) -> ( 2 x. A ) = ( A + A ) ) |
86 |
84 85
|
eqtr4d |
|- ( ( ph /\ B = C ) -> ( ( D + A ) - ( D - A ) ) = ( 2 x. A ) ) |
87 |
86
|
negeqd |
|- ( ( ph /\ B = C ) -> -u ( ( D + A ) - ( D - A ) ) = -u ( 2 x. A ) ) |
88 |
83 87
|
eqtr3d |
|- ( ( ph /\ B = C ) -> ( ( D - A ) - ( D + A ) ) = -u ( 2 x. A ) ) |
89 |
88
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( ( ( D - A ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) ) |
90 |
81 82 89
|
3eqtr2rd |
|- ( ( ph /\ B = C ) -> ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) = ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) ) |
91 |
70
|
adantr |
|- ( ( ph /\ B = C ) -> ( * ` ( D - A ) ) = ( ( * ` D ) - ( * ` A ) ) ) |
92 |
90 91
|
oveq12d |
|- ( ( ph /\ B = C ) -> ( ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) ) |
93 |
|
2cnd |
|- ( ( ph /\ B = C ) -> 2 e. CC ) |
94 |
93 25
|
mulcld |
|- ( ( ph /\ B = C ) -> ( 2 x. A ) e. CC ) |
95 |
94
|
negcld |
|- ( ( ph /\ B = C ) -> -u ( 2 x. A ) e. CC ) |
96 |
9
|
necomd |
|- ( ph -> D =/= A ) |
97 |
39 24 96
|
subne0d |
|- ( ph -> ( D - A ) =/= 0 ) |
98 |
44 97
|
cjne0d |
|- ( ph -> ( * ` ( D - A ) ) =/= 0 ) |
99 |
98
|
adantr |
|- ( ( ph /\ B = C ) -> ( * ` ( D - A ) ) =/= 0 ) |
100 |
95 60 99
|
divcan4d |
|- ( ( ph /\ B = C ) -> ( ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( 2 x. A ) ) |
101 |
16 92 100
|
3eqtr2d |
|- ( ( ph /\ B = C ) -> M = -u ( 2 x. A ) ) |
102 |
101
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( M x. X ) = ( -u ( 2 x. A ) x. X ) ) |
103 |
94 23
|
mulneg1d |
|- ( ( ph /\ B = C ) -> ( -u ( 2 x. A ) x. X ) = -u ( ( 2 x. A ) x. X ) ) |
104 |
93 25 23
|
mulassd |
|- ( ( ph /\ B = C ) -> ( ( 2 x. A ) x. X ) = ( 2 x. ( A x. X ) ) ) |
105 |
25 23
|
mulcomd |
|- ( ( ph /\ B = C ) -> ( A x. X ) = ( X x. A ) ) |
106 |
105
|
oveq2d |
|- ( ( ph /\ B = C ) -> ( 2 x. ( A x. X ) ) = ( 2 x. ( X x. A ) ) ) |
107 |
104 106
|
eqtrd |
|- ( ( ph /\ B = C ) -> ( ( 2 x. A ) x. X ) = ( 2 x. ( X x. A ) ) ) |
108 |
107
|
negeqd |
|- ( ( ph /\ B = C ) -> -u ( ( 2 x. A ) x. X ) = -u ( 2 x. ( X x. A ) ) ) |
109 |
102 103 108
|
3eqtrd |
|- ( ( ph /\ B = C ) -> ( M x. X ) = -u ( 2 x. ( X x. A ) ) ) |
110 |
25
|
sqcld |
|- ( ( ph /\ B = C ) -> ( A ^ 2 ) e. CC ) |
111 |
56
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( P x. D ) = ( 0 x. D ) ) |
112 |
40
|
mul02d |
|- ( ( ph /\ B = C ) -> ( 0 x. D ) = 0 ) |
113 |
111 112
|
eqtrd |
|- ( ( ph /\ B = C ) -> ( P x. D ) = 0 ) |
114 |
113
|
oveq2d |
|- ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - 0 ) ) |
115 |
40 25
|
mulcld |
|- ( ( ph /\ B = C ) -> ( D x. A ) e. CC ) |
116 |
66 115
|
mulcld |
|- ( ( ph /\ B = C ) -> ( ( * ` A ) x. ( D x. A ) ) e. CC ) |
117 |
116
|
subid1d |
|- ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - 0 ) = ( ( * ` A ) x. ( D x. A ) ) ) |
118 |
114 117
|
eqtrd |
|- ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) = ( ( * ` A ) x. ( D x. A ) ) ) |
119 |
47
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( Q x. A ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) |
120 |
119
|
oveq2d |
|- ( ( ph /\ B = C ) -> ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) = ( ( ( * ` D ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) ) |
121 |
118 120
|
oveq12d |
|- ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) ) ) |
122 |
62 115
|
mulcld |
|- ( ( ph /\ B = C ) -> ( ( * ` D ) x. ( D x. A ) ) e. CC ) |
123 |
61 25
|
mulcld |
|- ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) e. CC ) |
124 |
116 122 123
|
subsubd |
|- ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) + ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) ) |
125 |
70
|
negeqd |
|- ( ph -> -u ( * ` ( D - A ) ) = -u ( ( * ` D ) - ( * ` A ) ) ) |
126 |
75 76
|
negsubdi2d |
|- ( ph -> -u ( ( * ` D ) - ( * ` A ) ) = ( ( * ` A ) - ( * ` D ) ) ) |
127 |
125 126
|
eqtr2d |
|- ( ph -> ( ( * ` A ) - ( * ` D ) ) = -u ( * ` ( D - A ) ) ) |
128 |
127
|
oveq1d |
|- ( ph -> ( ( ( * ` A ) - ( * ` D ) ) x. ( D x. A ) ) = ( -u ( * ` ( D - A ) ) x. ( D x. A ) ) ) |
129 |
39 24
|
mulcld |
|- ( ph -> ( D x. A ) e. CC ) |
130 |
76 75 129
|
subdird |
|- ( ph -> ( ( ( * ` A ) - ( * ` D ) ) x. ( D x. A ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) ) |
131 |
72 129
|
mulcomd |
|- ( ph -> ( ( * ` ( D - A ) ) x. ( D x. A ) ) = ( ( D x. A ) x. ( * ` ( D - A ) ) ) ) |
132 |
131
|
negeqd |
|- ( ph -> -u ( ( * ` ( D - A ) ) x. ( D x. A ) ) = -u ( ( D x. A ) x. ( * ` ( D - A ) ) ) ) |
133 |
72 129
|
mulneg1d |
|- ( ph -> ( -u ( * ` ( D - A ) ) x. ( D x. A ) ) = -u ( ( * ` ( D - A ) ) x. ( D x. A ) ) ) |
134 |
129 72
|
mulneg1d |
|- ( ph -> ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) = -u ( ( D x. A ) x. ( * ` ( D - A ) ) ) ) |
135 |
132 133 134
|
3eqtr4d |
|- ( ph -> ( -u ( * ` ( D - A ) ) x. ( D x. A ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) ) |
136 |
128 130 135
|
3eqtr3d |
|- ( ph -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) ) |
137 |
136
|
adantr |
|- ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) ) |
138 |
59 60 25
|
mul32d |
|- ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) = ( ( ( D - A ) x. A ) x. ( * ` ( D - A ) ) ) ) |
139 |
40 25 25
|
subdird |
|- ( ( ph /\ B = C ) -> ( ( D - A ) x. A ) = ( ( D x. A ) - ( A x. A ) ) ) |
140 |
25
|
sqvald |
|- ( ( ph /\ B = C ) -> ( A ^ 2 ) = ( A x. A ) ) |
141 |
140
|
oveq2d |
|- ( ( ph /\ B = C ) -> ( ( D x. A ) - ( A ^ 2 ) ) = ( ( D x. A ) - ( A x. A ) ) ) |
142 |
139 141
|
eqtr4d |
|- ( ( ph /\ B = C ) -> ( ( D - A ) x. A ) = ( ( D x. A ) - ( A ^ 2 ) ) ) |
143 |
142
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( ( ( D - A ) x. A ) x. ( * ` ( D - A ) ) ) = ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) ) |
144 |
138 143
|
eqtrd |
|- ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) = ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) ) |
145 |
137 144
|
oveq12d |
|- ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) + ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) + ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) ) ) |
146 |
115
|
negcld |
|- ( ( ph /\ B = C ) -> -u ( D x. A ) e. CC ) |
147 |
115 110
|
subcld |
|- ( ( ph /\ B = C ) -> ( ( D x. A ) - ( A ^ 2 ) ) e. CC ) |
148 |
146 147 60
|
adddird |
|- ( ( ph /\ B = C ) -> ( ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) x. ( * ` ( D - A ) ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) + ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) ) ) |
149 |
115
|
subidd |
|- ( ( ph /\ B = C ) -> ( ( D x. A ) - ( D x. A ) ) = 0 ) |
150 |
149
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( ( ( D x. A ) - ( D x. A ) ) - ( A ^ 2 ) ) = ( 0 - ( A ^ 2 ) ) ) |
151 |
146 147
|
addcomd |
|- ( ( ph /\ B = C ) -> ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) = ( ( ( D x. A ) - ( A ^ 2 ) ) + -u ( D x. A ) ) ) |
152 |
147 115
|
negsubd |
|- ( ( ph /\ B = C ) -> ( ( ( D x. A ) - ( A ^ 2 ) ) + -u ( D x. A ) ) = ( ( ( D x. A ) - ( A ^ 2 ) ) - ( D x. A ) ) ) |
153 |
115 110 115
|
sub32d |
|- ( ( ph /\ B = C ) -> ( ( ( D x. A ) - ( A ^ 2 ) ) - ( D x. A ) ) = ( ( ( D x. A ) - ( D x. A ) ) - ( A ^ 2 ) ) ) |
154 |
151 152 153
|
3eqtrd |
|- ( ( ph /\ B = C ) -> ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) = ( ( ( D x. A ) - ( D x. A ) ) - ( A ^ 2 ) ) ) |
155 |
|
df-neg |
|- -u ( A ^ 2 ) = ( 0 - ( A ^ 2 ) ) |
156 |
155
|
a1i |
|- ( ( ph /\ B = C ) -> -u ( A ^ 2 ) = ( 0 - ( A ^ 2 ) ) ) |
157 |
150 154 156
|
3eqtr4d |
|- ( ( ph /\ B = C ) -> ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) = -u ( A ^ 2 ) ) |
158 |
157
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) x. ( * ` ( D - A ) ) ) = ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) ) |
159 |
145 148 158
|
3eqtr2d |
|- ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) + ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) = ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) ) |
160 |
121 124 159
|
3eqtrd |
|- ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) ) |
161 |
91
|
eqcomd |
|- ( ( ph /\ B = C ) -> ( ( * ` D ) - ( * ` A ) ) = ( * ` ( D - A ) ) ) |
162 |
160 161
|
oveq12d |
|- ( ( ph /\ B = C ) -> ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) ) |
163 |
110
|
negcld |
|- ( ( ph /\ B = C ) -> -u ( A ^ 2 ) e. CC ) |
164 |
163 60 99
|
divcan4d |
|- ( ( ph /\ B = C ) -> ( ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( A ^ 2 ) ) |
165 |
162 164
|
eqtr2d |
|- ( ( ph /\ B = C ) -> -u ( A ^ 2 ) = ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) ) |
166 |
110 165
|
negcon1ad |
|- ( ( ph /\ B = C ) -> -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( A ^ 2 ) ) |
167 |
15 166
|
eqtrid |
|- ( ( ph /\ B = C ) -> N = ( A ^ 2 ) ) |
168 |
109 167
|
oveq12d |
|- ( ( ph /\ B = C ) -> ( ( M x. X ) + N ) = ( -u ( 2 x. ( X x. A ) ) + ( A ^ 2 ) ) ) |
169 |
168
|
oveq2d |
|- ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. A ) ) + ( A ^ 2 ) ) ) ) |
170 |
23
|
sqcld |
|- ( ( ph /\ B = C ) -> ( X ^ 2 ) e. CC ) |
171 |
23 25
|
mulcld |
|- ( ( ph /\ B = C ) -> ( X x. A ) e. CC ) |
172 |
93 171
|
mulcld |
|- ( ( ph /\ B = C ) -> ( 2 x. ( X x. A ) ) e. CC ) |
173 |
172
|
negcld |
|- ( ( ph /\ B = C ) -> -u ( 2 x. ( X x. A ) ) e. CC ) |
174 |
170 173 110
|
addassd |
|- ( ( ph /\ B = C ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. A ) ) + ( A ^ 2 ) ) ) ) |
175 |
170 172
|
negsubd |
|- ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + -u ( 2 x. ( X x. A ) ) ) = ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) ) |
176 |
175
|
oveq1d |
|- ( ( ph /\ B = C ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) ) |
177 |
169 174 176
|
3eqtr2d |
|- ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) ) |
178 |
|
binom2sub |
|- ( ( X e. CC /\ A e. CC ) -> ( ( X - A ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) ) |
179 |
23 25 178
|
syl2anc |
|- ( ( ph /\ B = C ) -> ( ( X - A ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) ) |
180 |
35
|
sq0id |
|- ( ( ph /\ B = C ) -> ( ( X - A ) ^ 2 ) = 0 ) |
181 |
177 179 180
|
3eqtr2d |
|- ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 ) |
182 |
14
|
a1i |
|- ( ( ph /\ E = F ) -> M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) ) |
183 |
17
|
adantr |
|- ( ( ph /\ E = F ) -> E e. CC ) |
184 |
|
simpr |
|- ( ( ph /\ E = F ) -> E = F ) |
185 |
183 184
|
subeq0bd |
|- ( ( ph /\ E = F ) -> ( E - F ) = 0 ) |
186 |
185
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( E - F ) x. ( * ` ( E - F ) ) ) = ( 0 x. ( * ` ( E - F ) ) ) ) |
187 |
19
|
cjcld |
|- ( ph -> ( * ` ( E - F ) ) e. CC ) |
188 |
187
|
adantr |
|- ( ( ph /\ E = F ) -> ( * ` ( E - F ) ) e. CC ) |
189 |
188
|
mul02d |
|- ( ( ph /\ E = F ) -> ( 0 x. ( * ` ( E - F ) ) ) = 0 ) |
190 |
186 189
|
eqtrd |
|- ( ( ph /\ E = F ) -> ( ( E - F ) x. ( * ` ( E - F ) ) ) = 0 ) |
191 |
13 190
|
eqtrid |
|- ( ( ph /\ E = F ) -> Q = 0 ) |
192 |
191
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( Q - ( ( * ` D ) x. ( D + A ) ) ) = ( 0 - ( ( * ` D ) x. ( D + A ) ) ) ) |
193 |
51
|
adantr |
|- ( ( ph /\ E = F ) -> ( B - C ) e. CC ) |
194 |
193
|
absvalsqd |
|- ( ( ph /\ E = F ) -> ( ( abs ` ( B - C ) ) ^ 2 ) = ( ( B - C ) x. ( * ` ( B - C ) ) ) ) |
195 |
12 194
|
eqtr4id |
|- ( ( ph /\ E = F ) -> P = ( ( abs ` ( B - C ) ) ^ 2 ) ) |
196 |
10
|
adantr |
|- ( ( ph /\ E = F ) -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) ) |
197 |
8
|
adantr |
|- ( ( ph /\ E = F ) -> X e. CC ) |
198 |
39
|
adantr |
|- ( ( ph /\ E = F ) -> D e. CC ) |
199 |
8 39
|
subcld |
|- ( ph -> ( X - D ) e. CC ) |
200 |
199
|
adantr |
|- ( ( ph /\ E = F ) -> ( X - D ) e. CC ) |
201 |
11
|
adantr |
|- ( ( ph /\ E = F ) -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) |
202 |
185
|
abs00bd |
|- ( ( ph /\ E = F ) -> ( abs ` ( E - F ) ) = 0 ) |
203 |
201 202
|
eqtrd |
|- ( ( ph /\ E = F ) -> ( abs ` ( X - D ) ) = 0 ) |
204 |
200 203
|
abs00d |
|- ( ( ph /\ E = F ) -> ( X - D ) = 0 ) |
205 |
197 198 204
|
subeq0d |
|- ( ( ph /\ E = F ) -> X = D ) |
206 |
205
|
fvoveq1d |
|- ( ( ph /\ E = F ) -> ( abs ` ( X - A ) ) = ( abs ` ( D - A ) ) ) |
207 |
196 206
|
eqtr3d |
|- ( ( ph /\ E = F ) -> ( abs ` ( B - C ) ) = ( abs ` ( D - A ) ) ) |
208 |
207
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( abs ` ( B - C ) ) ^ 2 ) = ( ( abs ` ( D - A ) ) ^ 2 ) ) |
209 |
45
|
adantr |
|- ( ( ph /\ E = F ) -> ( ( abs ` ( D - A ) ) ^ 2 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
210 |
195 208 209
|
3eqtrd |
|- ( ( ph /\ E = F ) -> P = ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
211 |
210
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( P - ( ( * ` A ) x. ( D + A ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) |
212 |
192 211
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( 0 - ( ( * ` D ) x. ( D + A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) ) |
213 |
|
0cnd |
|- ( ( ph /\ E = F ) -> 0 e. CC ) |
214 |
198
|
cjcld |
|- ( ( ph /\ E = F ) -> ( * ` D ) e. CC ) |
215 |
24
|
adantr |
|- ( ( ph /\ E = F ) -> A e. CC ) |
216 |
198 215
|
addcld |
|- ( ( ph /\ E = F ) -> ( D + A ) e. CC ) |
217 |
214 216
|
mulcld |
|- ( ( ph /\ E = F ) -> ( ( * ` D ) x. ( D + A ) ) e. CC ) |
218 |
44
|
adantr |
|- ( ( ph /\ E = F ) -> ( D - A ) e. CC ) |
219 |
218
|
cjcld |
|- ( ( ph /\ E = F ) -> ( * ` ( D - A ) ) e. CC ) |
220 |
218 219
|
mulcld |
|- ( ( ph /\ E = F ) -> ( ( D - A ) x. ( * ` ( D - A ) ) ) e. CC ) |
221 |
215
|
cjcld |
|- ( ( ph /\ E = F ) -> ( * ` A ) e. CC ) |
222 |
221 216
|
mulcld |
|- ( ( ph /\ E = F ) -> ( ( * ` A ) x. ( D + A ) ) e. CC ) |
223 |
213 217 220 222
|
sub4d |
|- ( ( ph /\ E = F ) -> ( ( 0 - ( ( * ` D ) x. ( D + A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) ) |
224 |
218 219
|
mulneg1d |
|- ( ( ph /\ E = F ) -> ( -u ( D - A ) x. ( * ` ( D - A ) ) ) = -u ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
225 |
198 215
|
negsubdi2d |
|- ( ( ph /\ E = F ) -> -u ( D - A ) = ( A - D ) ) |
226 |
225
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( -u ( D - A ) x. ( * ` ( D - A ) ) ) = ( ( A - D ) x. ( * ` ( D - A ) ) ) ) |
227 |
|
df-neg |
|- -u ( ( D - A ) x. ( * ` ( D - A ) ) ) = ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) |
228 |
227
|
a1i |
|- ( ( ph /\ E = F ) -> -u ( ( D - A ) x. ( * ` ( D - A ) ) ) = ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) ) |
229 |
224 226 228
|
3eqtr3rd |
|- ( ( ph /\ E = F ) -> ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) = ( ( A - D ) x. ( * ` ( D - A ) ) ) ) |
230 |
78
|
adantr |
|- ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) ) |
231 |
229 230
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( A - D ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) ) |
232 |
212 223 231
|
3eqtrd |
|- ( ( ph /\ E = F ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( A - D ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) ) |
233 |
215 198
|
subcld |
|- ( ( ph /\ E = F ) -> ( A - D ) e. CC ) |
234 |
233 216 219
|
subdird |
|- ( ( ph /\ E = F ) -> ( ( ( A - D ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( ( ( A - D ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) ) |
235 |
216 233
|
negsubdi2d |
|- ( ( ph /\ E = F ) -> -u ( ( D + A ) - ( A - D ) ) = ( ( A - D ) - ( D + A ) ) ) |
236 |
198
|
2timesd |
|- ( ( ph /\ E = F ) -> ( 2 x. D ) = ( D + D ) ) |
237 |
215 198 198
|
pnncand |
|- ( ( ph /\ E = F ) -> ( ( A + D ) - ( A - D ) ) = ( D + D ) ) |
238 |
215 198
|
addcomd |
|- ( ( ph /\ E = F ) -> ( A + D ) = ( D + A ) ) |
239 |
238
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( A + D ) - ( A - D ) ) = ( ( D + A ) - ( A - D ) ) ) |
240 |
236 237 239
|
3eqtr2rd |
|- ( ( ph /\ E = F ) -> ( ( D + A ) - ( A - D ) ) = ( 2 x. D ) ) |
241 |
240
|
negeqd |
|- ( ( ph /\ E = F ) -> -u ( ( D + A ) - ( A - D ) ) = -u ( 2 x. D ) ) |
242 |
235 241
|
eqtr3d |
|- ( ( ph /\ E = F ) -> ( ( A - D ) - ( D + A ) ) = -u ( 2 x. D ) ) |
243 |
242
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( ( A - D ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) ) |
244 |
232 234 243
|
3eqtr2rd |
|- ( ( ph /\ E = F ) -> ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) = ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) ) |
245 |
70
|
adantr |
|- ( ( ph /\ E = F ) -> ( * ` ( D - A ) ) = ( ( * ` D ) - ( * ` A ) ) ) |
246 |
244 245
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) ) |
247 |
|
2cnd |
|- ( ( ph /\ E = F ) -> 2 e. CC ) |
248 |
247 198
|
mulcld |
|- ( ( ph /\ E = F ) -> ( 2 x. D ) e. CC ) |
249 |
248
|
negcld |
|- ( ( ph /\ E = F ) -> -u ( 2 x. D ) e. CC ) |
250 |
98
|
adantr |
|- ( ( ph /\ E = F ) -> ( * ` ( D - A ) ) =/= 0 ) |
251 |
249 219 250
|
divcan4d |
|- ( ( ph /\ E = F ) -> ( ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( 2 x. D ) ) |
252 |
182 246 251
|
3eqtr2d |
|- ( ( ph /\ E = F ) -> M = -u ( 2 x. D ) ) |
253 |
252
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( M x. X ) = ( -u ( 2 x. D ) x. X ) ) |
254 |
248 197
|
mulneg1d |
|- ( ( ph /\ E = F ) -> ( -u ( 2 x. D ) x. X ) = -u ( ( 2 x. D ) x. X ) ) |
255 |
247 198 197
|
mulassd |
|- ( ( ph /\ E = F ) -> ( ( 2 x. D ) x. X ) = ( 2 x. ( D x. X ) ) ) |
256 |
198 197
|
mulcomd |
|- ( ( ph /\ E = F ) -> ( D x. X ) = ( X x. D ) ) |
257 |
256
|
oveq2d |
|- ( ( ph /\ E = F ) -> ( 2 x. ( D x. X ) ) = ( 2 x. ( X x. D ) ) ) |
258 |
255 257
|
eqtrd |
|- ( ( ph /\ E = F ) -> ( ( 2 x. D ) x. X ) = ( 2 x. ( X x. D ) ) ) |
259 |
258
|
negeqd |
|- ( ( ph /\ E = F ) -> -u ( ( 2 x. D ) x. X ) = -u ( 2 x. ( X x. D ) ) ) |
260 |
253 254 259
|
3eqtrd |
|- ( ( ph /\ E = F ) -> ( M x. X ) = -u ( 2 x. ( X x. D ) ) ) |
261 |
198
|
sqcld |
|- ( ( ph /\ E = F ) -> ( D ^ 2 ) e. CC ) |
262 |
210
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( P x. D ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) |
263 |
262
|
oveq2d |
|- ( ( ph /\ E = F ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) ) |
264 |
191
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( Q x. A ) = ( 0 x. A ) ) |
265 |
215
|
mul02d |
|- ( ( ph /\ E = F ) -> ( 0 x. A ) = 0 ) |
266 |
264 265
|
eqtrd |
|- ( ( ph /\ E = F ) -> ( Q x. A ) = 0 ) |
267 |
266
|
oveq2d |
|- ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) = ( ( ( * ` D ) x. ( D x. A ) ) - 0 ) ) |
268 |
198 215
|
mulcld |
|- ( ( ph /\ E = F ) -> ( D x. A ) e. CC ) |
269 |
214 268
|
mulcld |
|- ( ( ph /\ E = F ) -> ( ( * ` D ) x. ( D x. A ) ) e. CC ) |
270 |
269
|
subid1d |
|- ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D x. A ) ) - 0 ) = ( ( * ` D ) x. ( D x. A ) ) ) |
271 |
267 270
|
eqtrd |
|- ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) = ( ( * ` D ) x. ( D x. A ) ) ) |
272 |
263 271
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) - ( ( * ` D ) x. ( D x. A ) ) ) ) |
273 |
221 268
|
mulcld |
|- ( ( ph /\ E = F ) -> ( ( * ` A ) x. ( D x. A ) ) e. CC ) |
274 |
220 198
|
mulcld |
|- ( ( ph /\ E = F ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) e. CC ) |
275 |
273 274 269
|
sub32d |
|- ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) ) |
276 |
136
|
adantr |
|- ( ( ph /\ E = F ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) ) |
277 |
218 219 198
|
mul32d |
|- ( ( ph /\ E = F ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) = ( ( ( D - A ) x. D ) x. ( * ` ( D - A ) ) ) ) |
278 |
198 215 198
|
subdird |
|- ( ( ph /\ E = F ) -> ( ( D - A ) x. D ) = ( ( D x. D ) - ( A x. D ) ) ) |
279 |
198
|
sqvald |
|- ( ( ph /\ E = F ) -> ( D ^ 2 ) = ( D x. D ) ) |
280 |
198 215
|
mulcomd |
|- ( ( ph /\ E = F ) -> ( D x. A ) = ( A x. D ) ) |
281 |
279 280
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( D ^ 2 ) - ( D x. A ) ) = ( ( D x. D ) - ( A x. D ) ) ) |
282 |
278 281
|
eqtr4d |
|- ( ( ph /\ E = F ) -> ( ( D - A ) x. D ) = ( ( D ^ 2 ) - ( D x. A ) ) ) |
283 |
282
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( ( D - A ) x. D ) x. ( * ` ( D - A ) ) ) = ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) ) |
284 |
277 283
|
eqtrd |
|- ( ( ph /\ E = F ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) = ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) ) |
285 |
276 284
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) - ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) ) ) |
286 |
268
|
negcld |
|- ( ( ph /\ E = F ) -> -u ( D x. A ) e. CC ) |
287 |
261 268
|
subcld |
|- ( ( ph /\ E = F ) -> ( ( D ^ 2 ) - ( D x. A ) ) e. CC ) |
288 |
286 287 219
|
subdird |
|- ( ( ph /\ E = F ) -> ( ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) x. ( * ` ( D - A ) ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) - ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) ) ) |
289 |
286 268
|
addcomd |
|- ( ( ph /\ E = F ) -> ( -u ( D x. A ) + ( D x. A ) ) = ( ( D x. A ) + -u ( D x. A ) ) ) |
290 |
268 268
|
negsubd |
|- ( ( ph /\ E = F ) -> ( ( D x. A ) + -u ( D x. A ) ) = ( ( D x. A ) - ( D x. A ) ) ) |
291 |
268
|
subidd |
|- ( ( ph /\ E = F ) -> ( ( D x. A ) - ( D x. A ) ) = 0 ) |
292 |
289 290 291
|
3eqtrd |
|- ( ( ph /\ E = F ) -> ( -u ( D x. A ) + ( D x. A ) ) = 0 ) |
293 |
292
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( -u ( D x. A ) + ( D x. A ) ) - ( D ^ 2 ) ) = ( 0 - ( D ^ 2 ) ) ) |
294 |
286 261 268
|
subsub3d |
|- ( ( ph /\ E = F ) -> ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) = ( ( -u ( D x. A ) + ( D x. A ) ) - ( D ^ 2 ) ) ) |
295 |
|
df-neg |
|- -u ( D ^ 2 ) = ( 0 - ( D ^ 2 ) ) |
296 |
295
|
a1i |
|- ( ( ph /\ E = F ) -> -u ( D ^ 2 ) = ( 0 - ( D ^ 2 ) ) ) |
297 |
293 294 296
|
3eqtr4d |
|- ( ( ph /\ E = F ) -> ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) = -u ( D ^ 2 ) ) |
298 |
297
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) x. ( * ` ( D - A ) ) ) = ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) ) |
299 |
285 288 298
|
3eqtr2d |
|- ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) = ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) ) |
300 |
272 275 299
|
3eqtrd |
|- ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) ) |
301 |
245
|
eqcomd |
|- ( ( ph /\ E = F ) -> ( ( * ` D ) - ( * ` A ) ) = ( * ` ( D - A ) ) ) |
302 |
300 301
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) ) |
303 |
261
|
negcld |
|- ( ( ph /\ E = F ) -> -u ( D ^ 2 ) e. CC ) |
304 |
303 219 250
|
divcan4d |
|- ( ( ph /\ E = F ) -> ( ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( D ^ 2 ) ) |
305 |
302 304
|
eqtr2d |
|- ( ( ph /\ E = F ) -> -u ( D ^ 2 ) = ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) ) |
306 |
261 305
|
negcon1ad |
|- ( ( ph /\ E = F ) -> -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( D ^ 2 ) ) |
307 |
15 306
|
eqtrid |
|- ( ( ph /\ E = F ) -> N = ( D ^ 2 ) ) |
308 |
260 307
|
oveq12d |
|- ( ( ph /\ E = F ) -> ( ( M x. X ) + N ) = ( -u ( 2 x. ( X x. D ) ) + ( D ^ 2 ) ) ) |
309 |
308
|
oveq2d |
|- ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. D ) ) + ( D ^ 2 ) ) ) ) |
310 |
197
|
sqcld |
|- ( ( ph /\ E = F ) -> ( X ^ 2 ) e. CC ) |
311 |
197 198
|
mulcld |
|- ( ( ph /\ E = F ) -> ( X x. D ) e. CC ) |
312 |
247 311
|
mulcld |
|- ( ( ph /\ E = F ) -> ( 2 x. ( X x. D ) ) e. CC ) |
313 |
312
|
negcld |
|- ( ( ph /\ E = F ) -> -u ( 2 x. ( X x. D ) ) e. CC ) |
314 |
310 313 261
|
addassd |
|- ( ( ph /\ E = F ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. D ) ) + ( D ^ 2 ) ) ) ) |
315 |
310 312
|
negsubd |
|- ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + -u ( 2 x. ( X x. D ) ) ) = ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) ) |
316 |
315
|
oveq1d |
|- ( ( ph /\ E = F ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) ) |
317 |
309 314 316
|
3eqtr2d |
|- ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) ) |
318 |
|
binom2sub |
|- ( ( X e. CC /\ D e. CC ) -> ( ( X - D ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) ) |
319 |
197 198 318
|
syl2anc |
|- ( ( ph /\ E = F ) -> ( ( X - D ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) ) |
320 |
204
|
sq0id |
|- ( ( ph /\ E = F ) -> ( ( X - D ) ^ 2 ) = 0 ) |
321 |
317 319 320
|
3eqtr2d |
|- ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 ) |
322 |
1
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> S C_ CC ) |
323 |
2
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> A e. S ) |
324 |
3
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> B e. S ) |
325 |
4
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> C e. S ) |
326 |
5
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> D e. S ) |
327 |
6
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> E e. S ) |
328 |
7
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> F e. S ) |
329 |
8
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> X e. CC ) |
330 |
9
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> A =/= D ) |
331 |
10
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) ) |
332 |
11
|
adantr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) |
333 |
|
simprl |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> B =/= C ) |
334 |
|
simprr |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> E =/= F ) |
335 |
322 323 324 325 326 327 328 329 330 331 332 12 13 14 15 333 334
|
constrrtcclem |
|- ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 ) |
336 |
181 321 335
|
pm2.61da2ne |
|- ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 ) |