Metamath Proof Explorer


Theorem constrrtcc

Description: In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses constrrtcc.s
|- ( ph -> S C_ CC )
constrrtcc.a
|- ( ph -> A e. S )
constrrtcc.b
|- ( ph -> B e. S )
constrrtcc.c
|- ( ph -> C e. S )
constrrtcc.d
|- ( ph -> D e. S )
constrrtcc.e
|- ( ph -> E e. S )
constrrtcc.f
|- ( ph -> F e. S )
constrrtcc.x
|- ( ph -> X e. CC )
constrrtcc.1
|- ( ph -> A =/= D )
constrrtcc.2
|- ( ph -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) )
constrrtcc.3
|- ( ph -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) )
constrrtcc.4
|- P = ( ( B - C ) x. ( * ` ( B - C ) ) )
constrrtcc.5
|- Q = ( ( E - F ) x. ( * ` ( E - F ) ) )
constrrtcc.m
|- M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
constrrtcc.n
|- N = -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
Assertion constrrtcc
|- ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )

Proof

Step Hyp Ref Expression
1 constrrtcc.s
 |-  ( ph -> S C_ CC )
2 constrrtcc.a
 |-  ( ph -> A e. S )
3 constrrtcc.b
 |-  ( ph -> B e. S )
4 constrrtcc.c
 |-  ( ph -> C e. S )
5 constrrtcc.d
 |-  ( ph -> D e. S )
6 constrrtcc.e
 |-  ( ph -> E e. S )
7 constrrtcc.f
 |-  ( ph -> F e. S )
8 constrrtcc.x
 |-  ( ph -> X e. CC )
9 constrrtcc.1
 |-  ( ph -> A =/= D )
10 constrrtcc.2
 |-  ( ph -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) )
11 constrrtcc.3
 |-  ( ph -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) )
12 constrrtcc.4
 |-  P = ( ( B - C ) x. ( * ` ( B - C ) ) )
13 constrrtcc.5
 |-  Q = ( ( E - F ) x. ( * ` ( E - F ) ) )
14 constrrtcc.m
 |-  M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
15 constrrtcc.n
 |-  N = -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) )
16 14 a1i
 |-  ( ( ph /\ B = C ) -> M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
17 1 6 sseldd
 |-  ( ph -> E e. CC )
18 1 7 sseldd
 |-  ( ph -> F e. CC )
19 17 18 subcld
 |-  ( ph -> ( E - F ) e. CC )
20 19 adantr
 |-  ( ( ph /\ B = C ) -> ( E - F ) e. CC )
21 20 absvalsqd
 |-  ( ( ph /\ B = C ) -> ( ( abs ` ( E - F ) ) ^ 2 ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) )
22 13 21 eqtr4id
 |-  ( ( ph /\ B = C ) -> Q = ( ( abs ` ( E - F ) ) ^ 2 ) )
23 8 adantr
 |-  ( ( ph /\ B = C ) -> X e. CC )
24 1 2 sseldd
 |-  ( ph -> A e. CC )
25 24 adantr
 |-  ( ( ph /\ B = C ) -> A e. CC )
26 8 24 subcld
 |-  ( ph -> ( X - A ) e. CC )
27 26 adantr
 |-  ( ( ph /\ B = C ) -> ( X - A ) e. CC )
28 10 adantr
 |-  ( ( ph /\ B = C ) -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) )
29 1 3 sseldd
 |-  ( ph -> B e. CC )
30 29 adantr
 |-  ( ( ph /\ B = C ) -> B e. CC )
31 simpr
 |-  ( ( ph /\ B = C ) -> B = C )
32 30 31 subeq0bd
 |-  ( ( ph /\ B = C ) -> ( B - C ) = 0 )
33 32 abs00bd
 |-  ( ( ph /\ B = C ) -> ( abs ` ( B - C ) ) = 0 )
34 28 33 eqtrd
 |-  ( ( ph /\ B = C ) -> ( abs ` ( X - A ) ) = 0 )
35 27 34 abs00d
 |-  ( ( ph /\ B = C ) -> ( X - A ) = 0 )
36 23 25 35 subeq0d
 |-  ( ( ph /\ B = C ) -> X = A )
37 36 fvoveq1d
 |-  ( ( ph /\ B = C ) -> ( abs ` ( X - D ) ) = ( abs ` ( A - D ) ) )
38 11 adantr
 |-  ( ( ph /\ B = C ) -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) )
39 1 5 sseldd
 |-  ( ph -> D e. CC )
40 39 adantr
 |-  ( ( ph /\ B = C ) -> D e. CC )
41 25 40 abssubd
 |-  ( ( ph /\ B = C ) -> ( abs ` ( A - D ) ) = ( abs ` ( D - A ) ) )
42 37 38 41 3eqtr3d
 |-  ( ( ph /\ B = C ) -> ( abs ` ( E - F ) ) = ( abs ` ( D - A ) ) )
43 42 oveq1d
 |-  ( ( ph /\ B = C ) -> ( ( abs ` ( E - F ) ) ^ 2 ) = ( ( abs ` ( D - A ) ) ^ 2 ) )
44 39 24 subcld
 |-  ( ph -> ( D - A ) e. CC )
45 44 absvalsqd
 |-  ( ph -> ( ( abs ` ( D - A ) ) ^ 2 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) )
46 45 adantr
 |-  ( ( ph /\ B = C ) -> ( ( abs ` ( D - A ) ) ^ 2 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) )
47 22 43 46 3eqtrd
 |-  ( ( ph /\ B = C ) -> Q = ( ( D - A ) x. ( * ` ( D - A ) ) ) )
48 47 oveq1d
 |-  ( ( ph /\ B = C ) -> ( Q - ( ( * ` D ) x. ( D + A ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` D ) x. ( D + A ) ) ) )
49 32 oveq1d
 |-  ( ( ph /\ B = C ) -> ( ( B - C ) x. ( * ` ( B - C ) ) ) = ( 0 x. ( * ` ( B - C ) ) ) )
50 1 4 sseldd
 |-  ( ph -> C e. CC )
51 29 50 subcld
 |-  ( ph -> ( B - C ) e. CC )
52 51 cjcld
 |-  ( ph -> ( * ` ( B - C ) ) e. CC )
53 52 adantr
 |-  ( ( ph /\ B = C ) -> ( * ` ( B - C ) ) e. CC )
54 53 mul02d
 |-  ( ( ph /\ B = C ) -> ( 0 x. ( * ` ( B - C ) ) ) = 0 )
55 49 54 eqtrd
 |-  ( ( ph /\ B = C ) -> ( ( B - C ) x. ( * ` ( B - C ) ) ) = 0 )
56 12 55 eqtrid
 |-  ( ( ph /\ B = C ) -> P = 0 )
57 56 oveq1d
 |-  ( ( ph /\ B = C ) -> ( P - ( ( * ` A ) x. ( D + A ) ) ) = ( 0 - ( ( * ` A ) x. ( D + A ) ) ) )
58 48 57 oveq12d
 |-  ( ( ph /\ B = C ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` D ) x. ( D + A ) ) ) - ( 0 - ( ( * ` A ) x. ( D + A ) ) ) ) )
59 44 adantr
 |-  ( ( ph /\ B = C ) -> ( D - A ) e. CC )
60 59 cjcld
 |-  ( ( ph /\ B = C ) -> ( * ` ( D - A ) ) e. CC )
61 59 60 mulcld
 |-  ( ( ph /\ B = C ) -> ( ( D - A ) x. ( * ` ( D - A ) ) ) e. CC )
62 40 cjcld
 |-  ( ( ph /\ B = C ) -> ( * ` D ) e. CC )
63 40 25 addcld
 |-  ( ( ph /\ B = C ) -> ( D + A ) e. CC )
64 62 63 mulcld
 |-  ( ( ph /\ B = C ) -> ( ( * ` D ) x. ( D + A ) ) e. CC )
65 0cnd
 |-  ( ( ph /\ B = C ) -> 0 e. CC )
66 25 cjcld
 |-  ( ( ph /\ B = C ) -> ( * ` A ) e. CC )
67 66 63 mulcld
 |-  ( ( ph /\ B = C ) -> ( ( * ` A ) x. ( D + A ) ) e. CC )
68 61 64 65 67 sub4d
 |-  ( ( ph /\ B = C ) -> ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` D ) x. ( D + A ) ) ) - ( 0 - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - 0 ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) )
69 61 subid1d
 |-  ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - 0 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) )
70 39 24 cjsubd
 |-  ( ph -> ( * ` ( D - A ) ) = ( ( * ` D ) - ( * ` A ) ) )
71 70 oveq1d
 |-  ( ph -> ( ( * ` ( D - A ) ) x. ( D + A ) ) = ( ( ( * ` D ) - ( * ` A ) ) x. ( D + A ) ) )
72 44 cjcld
 |-  ( ph -> ( * ` ( D - A ) ) e. CC )
73 39 24 addcld
 |-  ( ph -> ( D + A ) e. CC )
74 72 73 mulcomd
 |-  ( ph -> ( ( * ` ( D - A ) ) x. ( D + A ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) )
75 39 cjcld
 |-  ( ph -> ( * ` D ) e. CC )
76 24 cjcld
 |-  ( ph -> ( * ` A ) e. CC )
77 75 76 73 subdird
 |-  ( ph -> ( ( ( * ` D ) - ( * ` A ) ) x. ( D + A ) ) = ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) )
78 71 74 77 3eqtr3rd
 |-  ( ph -> ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) )
79 78 adantr
 |-  ( ( ph /\ B = C ) -> ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) )
80 69 79 oveq12d
 |-  ( ( ph /\ B = C ) -> ( ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - 0 ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) )
81 58 68 80 3eqtrd
 |-  ( ( ph /\ B = C ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) )
82 59 63 60 subdird
 |-  ( ( ph /\ B = C ) -> ( ( ( D - A ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) )
83 63 59 negsubdi2d
 |-  ( ( ph /\ B = C ) -> -u ( ( D + A ) - ( D - A ) ) = ( ( D - A ) - ( D + A ) ) )
84 40 25 25 pnncand
 |-  ( ( ph /\ B = C ) -> ( ( D + A ) - ( D - A ) ) = ( A + A ) )
85 25 2timesd
 |-  ( ( ph /\ B = C ) -> ( 2 x. A ) = ( A + A ) )
86 84 85 eqtr4d
 |-  ( ( ph /\ B = C ) -> ( ( D + A ) - ( D - A ) ) = ( 2 x. A ) )
87 86 negeqd
 |-  ( ( ph /\ B = C ) -> -u ( ( D + A ) - ( D - A ) ) = -u ( 2 x. A ) )
88 83 87 eqtr3d
 |-  ( ( ph /\ B = C ) -> ( ( D - A ) - ( D + A ) ) = -u ( 2 x. A ) )
89 88 oveq1d
 |-  ( ( ph /\ B = C ) -> ( ( ( D - A ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) )
90 81 82 89 3eqtr2rd
 |-  ( ( ph /\ B = C ) -> ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) = ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) )
91 70 adantr
 |-  ( ( ph /\ B = C ) -> ( * ` ( D - A ) ) = ( ( * ` D ) - ( * ` A ) ) )
92 90 91 oveq12d
 |-  ( ( ph /\ B = C ) -> ( ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
93 2cnd
 |-  ( ( ph /\ B = C ) -> 2 e. CC )
94 93 25 mulcld
 |-  ( ( ph /\ B = C ) -> ( 2 x. A ) e. CC )
95 94 negcld
 |-  ( ( ph /\ B = C ) -> -u ( 2 x. A ) e. CC )
96 9 necomd
 |-  ( ph -> D =/= A )
97 39 24 96 subne0d
 |-  ( ph -> ( D - A ) =/= 0 )
98 44 97 cjne0d
 |-  ( ph -> ( * ` ( D - A ) ) =/= 0 )
99 98 adantr
 |-  ( ( ph /\ B = C ) -> ( * ` ( D - A ) ) =/= 0 )
100 95 60 99 divcan4d
 |-  ( ( ph /\ B = C ) -> ( ( -u ( 2 x. A ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( 2 x. A ) )
101 16 92 100 3eqtr2d
 |-  ( ( ph /\ B = C ) -> M = -u ( 2 x. A ) )
102 101 oveq1d
 |-  ( ( ph /\ B = C ) -> ( M x. X ) = ( -u ( 2 x. A ) x. X ) )
103 94 23 mulneg1d
 |-  ( ( ph /\ B = C ) -> ( -u ( 2 x. A ) x. X ) = -u ( ( 2 x. A ) x. X ) )
104 93 25 23 mulassd
 |-  ( ( ph /\ B = C ) -> ( ( 2 x. A ) x. X ) = ( 2 x. ( A x. X ) ) )
105 25 23 mulcomd
 |-  ( ( ph /\ B = C ) -> ( A x. X ) = ( X x. A ) )
106 105 oveq2d
 |-  ( ( ph /\ B = C ) -> ( 2 x. ( A x. X ) ) = ( 2 x. ( X x. A ) ) )
107 104 106 eqtrd
 |-  ( ( ph /\ B = C ) -> ( ( 2 x. A ) x. X ) = ( 2 x. ( X x. A ) ) )
108 107 negeqd
 |-  ( ( ph /\ B = C ) -> -u ( ( 2 x. A ) x. X ) = -u ( 2 x. ( X x. A ) ) )
109 102 103 108 3eqtrd
 |-  ( ( ph /\ B = C ) -> ( M x. X ) = -u ( 2 x. ( X x. A ) ) )
110 25 sqcld
 |-  ( ( ph /\ B = C ) -> ( A ^ 2 ) e. CC )
111 56 oveq1d
 |-  ( ( ph /\ B = C ) -> ( P x. D ) = ( 0 x. D ) )
112 40 mul02d
 |-  ( ( ph /\ B = C ) -> ( 0 x. D ) = 0 )
113 111 112 eqtrd
 |-  ( ( ph /\ B = C ) -> ( P x. D ) = 0 )
114 113 oveq2d
 |-  ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - 0 ) )
115 40 25 mulcld
 |-  ( ( ph /\ B = C ) -> ( D x. A ) e. CC )
116 66 115 mulcld
 |-  ( ( ph /\ B = C ) -> ( ( * ` A ) x. ( D x. A ) ) e. CC )
117 116 subid1d
 |-  ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - 0 ) = ( ( * ` A ) x. ( D x. A ) ) )
118 114 117 eqtrd
 |-  ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) = ( ( * ` A ) x. ( D x. A ) ) )
119 47 oveq1d
 |-  ( ( ph /\ B = C ) -> ( Q x. A ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) )
120 119 oveq2d
 |-  ( ( ph /\ B = C ) -> ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) = ( ( ( * ` D ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) )
121 118 120 oveq12d
 |-  ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) ) )
122 62 115 mulcld
 |-  ( ( ph /\ B = C ) -> ( ( * ` D ) x. ( D x. A ) ) e. CC )
123 61 25 mulcld
 |-  ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) e. CC )
124 116 122 123 subsubd
 |-  ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) + ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) )
125 70 negeqd
 |-  ( ph -> -u ( * ` ( D - A ) ) = -u ( ( * ` D ) - ( * ` A ) ) )
126 75 76 negsubdi2d
 |-  ( ph -> -u ( ( * ` D ) - ( * ` A ) ) = ( ( * ` A ) - ( * ` D ) ) )
127 125 126 eqtr2d
 |-  ( ph -> ( ( * ` A ) - ( * ` D ) ) = -u ( * ` ( D - A ) ) )
128 127 oveq1d
 |-  ( ph -> ( ( ( * ` A ) - ( * ` D ) ) x. ( D x. A ) ) = ( -u ( * ` ( D - A ) ) x. ( D x. A ) ) )
129 39 24 mulcld
 |-  ( ph -> ( D x. A ) e. CC )
130 76 75 129 subdird
 |-  ( ph -> ( ( ( * ` A ) - ( * ` D ) ) x. ( D x. A ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) )
131 72 129 mulcomd
 |-  ( ph -> ( ( * ` ( D - A ) ) x. ( D x. A ) ) = ( ( D x. A ) x. ( * ` ( D - A ) ) ) )
132 131 negeqd
 |-  ( ph -> -u ( ( * ` ( D - A ) ) x. ( D x. A ) ) = -u ( ( D x. A ) x. ( * ` ( D - A ) ) ) )
133 72 129 mulneg1d
 |-  ( ph -> ( -u ( * ` ( D - A ) ) x. ( D x. A ) ) = -u ( ( * ` ( D - A ) ) x. ( D x. A ) ) )
134 129 72 mulneg1d
 |-  ( ph -> ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) = -u ( ( D x. A ) x. ( * ` ( D - A ) ) ) )
135 132 133 134 3eqtr4d
 |-  ( ph -> ( -u ( * ` ( D - A ) ) x. ( D x. A ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) )
136 128 130 135 3eqtr3d
 |-  ( ph -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) )
137 136 adantr
 |-  ( ( ph /\ B = C ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) )
138 59 60 25 mul32d
 |-  ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) = ( ( ( D - A ) x. A ) x. ( * ` ( D - A ) ) ) )
139 40 25 25 subdird
 |-  ( ( ph /\ B = C ) -> ( ( D - A ) x. A ) = ( ( D x. A ) - ( A x. A ) ) )
140 25 sqvald
 |-  ( ( ph /\ B = C ) -> ( A ^ 2 ) = ( A x. A ) )
141 140 oveq2d
 |-  ( ( ph /\ B = C ) -> ( ( D x. A ) - ( A ^ 2 ) ) = ( ( D x. A ) - ( A x. A ) ) )
142 139 141 eqtr4d
 |-  ( ( ph /\ B = C ) -> ( ( D - A ) x. A ) = ( ( D x. A ) - ( A ^ 2 ) ) )
143 142 oveq1d
 |-  ( ( ph /\ B = C ) -> ( ( ( D - A ) x. A ) x. ( * ` ( D - A ) ) ) = ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) )
144 138 143 eqtrd
 |-  ( ( ph /\ B = C ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) = ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) )
145 137 144 oveq12d
 |-  ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) + ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) + ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) ) )
146 115 negcld
 |-  ( ( ph /\ B = C ) -> -u ( D x. A ) e. CC )
147 115 110 subcld
 |-  ( ( ph /\ B = C ) -> ( ( D x. A ) - ( A ^ 2 ) ) e. CC )
148 146 147 60 adddird
 |-  ( ( ph /\ B = C ) -> ( ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) x. ( * ` ( D - A ) ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) + ( ( ( D x. A ) - ( A ^ 2 ) ) x. ( * ` ( D - A ) ) ) ) )
149 115 subidd
 |-  ( ( ph /\ B = C ) -> ( ( D x. A ) - ( D x. A ) ) = 0 )
150 149 oveq1d
 |-  ( ( ph /\ B = C ) -> ( ( ( D x. A ) - ( D x. A ) ) - ( A ^ 2 ) ) = ( 0 - ( A ^ 2 ) ) )
151 146 147 addcomd
 |-  ( ( ph /\ B = C ) -> ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) = ( ( ( D x. A ) - ( A ^ 2 ) ) + -u ( D x. A ) ) )
152 147 115 negsubd
 |-  ( ( ph /\ B = C ) -> ( ( ( D x. A ) - ( A ^ 2 ) ) + -u ( D x. A ) ) = ( ( ( D x. A ) - ( A ^ 2 ) ) - ( D x. A ) ) )
153 115 110 115 sub32d
 |-  ( ( ph /\ B = C ) -> ( ( ( D x. A ) - ( A ^ 2 ) ) - ( D x. A ) ) = ( ( ( D x. A ) - ( D x. A ) ) - ( A ^ 2 ) ) )
154 151 152 153 3eqtrd
 |-  ( ( ph /\ B = C ) -> ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) = ( ( ( D x. A ) - ( D x. A ) ) - ( A ^ 2 ) ) )
155 df-neg
 |-  -u ( A ^ 2 ) = ( 0 - ( A ^ 2 ) )
156 155 a1i
 |-  ( ( ph /\ B = C ) -> -u ( A ^ 2 ) = ( 0 - ( A ^ 2 ) ) )
157 150 154 156 3eqtr4d
 |-  ( ( ph /\ B = C ) -> ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) = -u ( A ^ 2 ) )
158 157 oveq1d
 |-  ( ( ph /\ B = C ) -> ( ( -u ( D x. A ) + ( ( D x. A ) - ( A ^ 2 ) ) ) x. ( * ` ( D - A ) ) ) = ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) )
159 145 148 158 3eqtr2d
 |-  ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) + ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. A ) ) = ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) )
160 121 124 159 3eqtrd
 |-  ( ( ph /\ B = C ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) )
161 91 eqcomd
 |-  ( ( ph /\ B = C ) -> ( ( * ` D ) - ( * ` A ) ) = ( * ` ( D - A ) ) )
162 160 161 oveq12d
 |-  ( ( ph /\ B = C ) -> ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) )
163 110 negcld
 |-  ( ( ph /\ B = C ) -> -u ( A ^ 2 ) e. CC )
164 163 60 99 divcan4d
 |-  ( ( ph /\ B = C ) -> ( ( -u ( A ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( A ^ 2 ) )
165 162 164 eqtr2d
 |-  ( ( ph /\ B = C ) -> -u ( A ^ 2 ) = ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
166 110 165 negcon1ad
 |-  ( ( ph /\ B = C ) -> -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( A ^ 2 ) )
167 15 166 eqtrid
 |-  ( ( ph /\ B = C ) -> N = ( A ^ 2 ) )
168 109 167 oveq12d
 |-  ( ( ph /\ B = C ) -> ( ( M x. X ) + N ) = ( -u ( 2 x. ( X x. A ) ) + ( A ^ 2 ) ) )
169 168 oveq2d
 |-  ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. A ) ) + ( A ^ 2 ) ) ) )
170 23 sqcld
 |-  ( ( ph /\ B = C ) -> ( X ^ 2 ) e. CC )
171 23 25 mulcld
 |-  ( ( ph /\ B = C ) -> ( X x. A ) e. CC )
172 93 171 mulcld
 |-  ( ( ph /\ B = C ) -> ( 2 x. ( X x. A ) ) e. CC )
173 172 negcld
 |-  ( ( ph /\ B = C ) -> -u ( 2 x. ( X x. A ) ) e. CC )
174 170 173 110 addassd
 |-  ( ( ph /\ B = C ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. A ) ) + ( A ^ 2 ) ) ) )
175 170 172 negsubd
 |-  ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + -u ( 2 x. ( X x. A ) ) ) = ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) )
176 175 oveq1d
 |-  ( ( ph /\ B = C ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) )
177 169 174 176 3eqtr2d
 |-  ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) )
178 binom2sub
 |-  ( ( X e. CC /\ A e. CC ) -> ( ( X - A ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) )
179 23 25 178 syl2anc
 |-  ( ( ph /\ B = C ) -> ( ( X - A ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. A ) ) ) + ( A ^ 2 ) ) )
180 35 sq0id
 |-  ( ( ph /\ B = C ) -> ( ( X - A ) ^ 2 ) = 0 )
181 177 179 180 3eqtr2d
 |-  ( ( ph /\ B = C ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )
182 14 a1i
 |-  ( ( ph /\ E = F ) -> M = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
183 17 adantr
 |-  ( ( ph /\ E = F ) -> E e. CC )
184 simpr
 |-  ( ( ph /\ E = F ) -> E = F )
185 183 184 subeq0bd
 |-  ( ( ph /\ E = F ) -> ( E - F ) = 0 )
186 185 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( E - F ) x. ( * ` ( E - F ) ) ) = ( 0 x. ( * ` ( E - F ) ) ) )
187 19 cjcld
 |-  ( ph -> ( * ` ( E - F ) ) e. CC )
188 187 adantr
 |-  ( ( ph /\ E = F ) -> ( * ` ( E - F ) ) e. CC )
189 188 mul02d
 |-  ( ( ph /\ E = F ) -> ( 0 x. ( * ` ( E - F ) ) ) = 0 )
190 186 189 eqtrd
 |-  ( ( ph /\ E = F ) -> ( ( E - F ) x. ( * ` ( E - F ) ) ) = 0 )
191 13 190 eqtrid
 |-  ( ( ph /\ E = F ) -> Q = 0 )
192 191 oveq1d
 |-  ( ( ph /\ E = F ) -> ( Q - ( ( * ` D ) x. ( D + A ) ) ) = ( 0 - ( ( * ` D ) x. ( D + A ) ) ) )
193 51 adantr
 |-  ( ( ph /\ E = F ) -> ( B - C ) e. CC )
194 193 absvalsqd
 |-  ( ( ph /\ E = F ) -> ( ( abs ` ( B - C ) ) ^ 2 ) = ( ( B - C ) x. ( * ` ( B - C ) ) ) )
195 12 194 eqtr4id
 |-  ( ( ph /\ E = F ) -> P = ( ( abs ` ( B - C ) ) ^ 2 ) )
196 10 adantr
 |-  ( ( ph /\ E = F ) -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) )
197 8 adantr
 |-  ( ( ph /\ E = F ) -> X e. CC )
198 39 adantr
 |-  ( ( ph /\ E = F ) -> D e. CC )
199 8 39 subcld
 |-  ( ph -> ( X - D ) e. CC )
200 199 adantr
 |-  ( ( ph /\ E = F ) -> ( X - D ) e. CC )
201 11 adantr
 |-  ( ( ph /\ E = F ) -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) )
202 185 abs00bd
 |-  ( ( ph /\ E = F ) -> ( abs ` ( E - F ) ) = 0 )
203 201 202 eqtrd
 |-  ( ( ph /\ E = F ) -> ( abs ` ( X - D ) ) = 0 )
204 200 203 abs00d
 |-  ( ( ph /\ E = F ) -> ( X - D ) = 0 )
205 197 198 204 subeq0d
 |-  ( ( ph /\ E = F ) -> X = D )
206 205 fvoveq1d
 |-  ( ( ph /\ E = F ) -> ( abs ` ( X - A ) ) = ( abs ` ( D - A ) ) )
207 196 206 eqtr3d
 |-  ( ( ph /\ E = F ) -> ( abs ` ( B - C ) ) = ( abs ` ( D - A ) ) )
208 207 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( abs ` ( B - C ) ) ^ 2 ) = ( ( abs ` ( D - A ) ) ^ 2 ) )
209 45 adantr
 |-  ( ( ph /\ E = F ) -> ( ( abs ` ( D - A ) ) ^ 2 ) = ( ( D - A ) x. ( * ` ( D - A ) ) ) )
210 195 208 209 3eqtrd
 |-  ( ( ph /\ E = F ) -> P = ( ( D - A ) x. ( * ` ( D - A ) ) ) )
211 210 oveq1d
 |-  ( ( ph /\ E = F ) -> ( P - ( ( * ` A ) x. ( D + A ) ) ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` A ) x. ( D + A ) ) ) )
212 192 211 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( 0 - ( ( * ` D ) x. ( D + A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) )
213 0cnd
 |-  ( ( ph /\ E = F ) -> 0 e. CC )
214 198 cjcld
 |-  ( ( ph /\ E = F ) -> ( * ` D ) e. CC )
215 24 adantr
 |-  ( ( ph /\ E = F ) -> A e. CC )
216 198 215 addcld
 |-  ( ( ph /\ E = F ) -> ( D + A ) e. CC )
217 214 216 mulcld
 |-  ( ( ph /\ E = F ) -> ( ( * ` D ) x. ( D + A ) ) e. CC )
218 44 adantr
 |-  ( ( ph /\ E = F ) -> ( D - A ) e. CC )
219 218 cjcld
 |-  ( ( ph /\ E = F ) -> ( * ` ( D - A ) ) e. CC )
220 218 219 mulcld
 |-  ( ( ph /\ E = F ) -> ( ( D - A ) x. ( * ` ( D - A ) ) ) e. CC )
221 215 cjcld
 |-  ( ( ph /\ E = F ) -> ( * ` A ) e. CC )
222 221 216 mulcld
 |-  ( ( ph /\ E = F ) -> ( ( * ` A ) x. ( D + A ) ) e. CC )
223 213 217 220 222 sub4d
 |-  ( ( ph /\ E = F ) -> ( ( 0 - ( ( * ` D ) x. ( D + A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) )
224 218 219 mulneg1d
 |-  ( ( ph /\ E = F ) -> ( -u ( D - A ) x. ( * ` ( D - A ) ) ) = -u ( ( D - A ) x. ( * ` ( D - A ) ) ) )
225 198 215 negsubdi2d
 |-  ( ( ph /\ E = F ) -> -u ( D - A ) = ( A - D ) )
226 225 oveq1d
 |-  ( ( ph /\ E = F ) -> ( -u ( D - A ) x. ( * ` ( D - A ) ) ) = ( ( A - D ) x. ( * ` ( D - A ) ) ) )
227 df-neg
 |-  -u ( ( D - A ) x. ( * ` ( D - A ) ) ) = ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) )
228 227 a1i
 |-  ( ( ph /\ E = F ) -> -u ( ( D - A ) x. ( * ` ( D - A ) ) ) = ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) )
229 224 226 228 3eqtr3rd
 |-  ( ( ph /\ E = F ) -> ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) = ( ( A - D ) x. ( * ` ( D - A ) ) ) )
230 78 adantr
 |-  ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) = ( ( D + A ) x. ( * ` ( D - A ) ) ) )
231 229 230 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( 0 - ( ( D - A ) x. ( * ` ( D - A ) ) ) ) - ( ( ( * ` D ) x. ( D + A ) ) - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( A - D ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) )
232 212 223 231 3eqtrd
 |-  ( ( ph /\ E = F ) -> ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) = ( ( ( A - D ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) )
233 215 198 subcld
 |-  ( ( ph /\ E = F ) -> ( A - D ) e. CC )
234 233 216 219 subdird
 |-  ( ( ph /\ E = F ) -> ( ( ( A - D ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( ( ( A - D ) x. ( * ` ( D - A ) ) ) - ( ( D + A ) x. ( * ` ( D - A ) ) ) ) )
235 216 233 negsubdi2d
 |-  ( ( ph /\ E = F ) -> -u ( ( D + A ) - ( A - D ) ) = ( ( A - D ) - ( D + A ) ) )
236 198 2timesd
 |-  ( ( ph /\ E = F ) -> ( 2 x. D ) = ( D + D ) )
237 215 198 198 pnncand
 |-  ( ( ph /\ E = F ) -> ( ( A + D ) - ( A - D ) ) = ( D + D ) )
238 215 198 addcomd
 |-  ( ( ph /\ E = F ) -> ( A + D ) = ( D + A ) )
239 238 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( A + D ) - ( A - D ) ) = ( ( D + A ) - ( A - D ) ) )
240 236 237 239 3eqtr2rd
 |-  ( ( ph /\ E = F ) -> ( ( D + A ) - ( A - D ) ) = ( 2 x. D ) )
241 240 negeqd
 |-  ( ( ph /\ E = F ) -> -u ( ( D + A ) - ( A - D ) ) = -u ( 2 x. D ) )
242 235 241 eqtr3d
 |-  ( ( ph /\ E = F ) -> ( ( A - D ) - ( D + A ) ) = -u ( 2 x. D ) )
243 242 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( ( A - D ) - ( D + A ) ) x. ( * ` ( D - A ) ) ) = ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) )
244 232 234 243 3eqtr2rd
 |-  ( ( ph /\ E = F ) -> ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) = ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) )
245 70 adantr
 |-  ( ( ph /\ E = F ) -> ( * ` ( D - A ) ) = ( ( * ` D ) - ( * ` A ) ) )
246 244 245 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = ( ( ( Q - ( ( * ` D ) x. ( D + A ) ) ) - ( P - ( ( * ` A ) x. ( D + A ) ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
247 2cnd
 |-  ( ( ph /\ E = F ) -> 2 e. CC )
248 247 198 mulcld
 |-  ( ( ph /\ E = F ) -> ( 2 x. D ) e. CC )
249 248 negcld
 |-  ( ( ph /\ E = F ) -> -u ( 2 x. D ) e. CC )
250 98 adantr
 |-  ( ( ph /\ E = F ) -> ( * ` ( D - A ) ) =/= 0 )
251 249 219 250 divcan4d
 |-  ( ( ph /\ E = F ) -> ( ( -u ( 2 x. D ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( 2 x. D ) )
252 182 246 251 3eqtr2d
 |-  ( ( ph /\ E = F ) -> M = -u ( 2 x. D ) )
253 252 oveq1d
 |-  ( ( ph /\ E = F ) -> ( M x. X ) = ( -u ( 2 x. D ) x. X ) )
254 248 197 mulneg1d
 |-  ( ( ph /\ E = F ) -> ( -u ( 2 x. D ) x. X ) = -u ( ( 2 x. D ) x. X ) )
255 247 198 197 mulassd
 |-  ( ( ph /\ E = F ) -> ( ( 2 x. D ) x. X ) = ( 2 x. ( D x. X ) ) )
256 198 197 mulcomd
 |-  ( ( ph /\ E = F ) -> ( D x. X ) = ( X x. D ) )
257 256 oveq2d
 |-  ( ( ph /\ E = F ) -> ( 2 x. ( D x. X ) ) = ( 2 x. ( X x. D ) ) )
258 255 257 eqtrd
 |-  ( ( ph /\ E = F ) -> ( ( 2 x. D ) x. X ) = ( 2 x. ( X x. D ) ) )
259 258 negeqd
 |-  ( ( ph /\ E = F ) -> -u ( ( 2 x. D ) x. X ) = -u ( 2 x. ( X x. D ) ) )
260 253 254 259 3eqtrd
 |-  ( ( ph /\ E = F ) -> ( M x. X ) = -u ( 2 x. ( X x. D ) ) )
261 198 sqcld
 |-  ( ( ph /\ E = F ) -> ( D ^ 2 ) e. CC )
262 210 oveq1d
 |-  ( ( ph /\ E = F ) -> ( P x. D ) = ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) )
263 262 oveq2d
 |-  ( ( ph /\ E = F ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) = ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) )
264 191 oveq1d
 |-  ( ( ph /\ E = F ) -> ( Q x. A ) = ( 0 x. A ) )
265 215 mul02d
 |-  ( ( ph /\ E = F ) -> ( 0 x. A ) = 0 )
266 264 265 eqtrd
 |-  ( ( ph /\ E = F ) -> ( Q x. A ) = 0 )
267 266 oveq2d
 |-  ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) = ( ( ( * ` D ) x. ( D x. A ) ) - 0 ) )
268 198 215 mulcld
 |-  ( ( ph /\ E = F ) -> ( D x. A ) e. CC )
269 214 268 mulcld
 |-  ( ( ph /\ E = F ) -> ( ( * ` D ) x. ( D x. A ) ) e. CC )
270 269 subid1d
 |-  ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D x. A ) ) - 0 ) = ( ( * ` D ) x. ( D x. A ) ) )
271 267 270 eqtrd
 |-  ( ( ph /\ E = F ) -> ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) = ( ( * ` D ) x. ( D x. A ) ) )
272 263 271 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) - ( ( * ` D ) x. ( D x. A ) ) ) )
273 221 268 mulcld
 |-  ( ( ph /\ E = F ) -> ( ( * ` A ) x. ( D x. A ) ) e. CC )
274 220 198 mulcld
 |-  ( ( ph /\ E = F ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) e. CC )
275 273 274 269 sub32d
 |-  ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) )
276 136 adantr
 |-  ( ( ph /\ E = F ) -> ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) = ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) )
277 218 219 198 mul32d
 |-  ( ( ph /\ E = F ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) = ( ( ( D - A ) x. D ) x. ( * ` ( D - A ) ) ) )
278 198 215 198 subdird
 |-  ( ( ph /\ E = F ) -> ( ( D - A ) x. D ) = ( ( D x. D ) - ( A x. D ) ) )
279 198 sqvald
 |-  ( ( ph /\ E = F ) -> ( D ^ 2 ) = ( D x. D ) )
280 198 215 mulcomd
 |-  ( ( ph /\ E = F ) -> ( D x. A ) = ( A x. D ) )
281 279 280 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( D ^ 2 ) - ( D x. A ) ) = ( ( D x. D ) - ( A x. D ) ) )
282 278 281 eqtr4d
 |-  ( ( ph /\ E = F ) -> ( ( D - A ) x. D ) = ( ( D ^ 2 ) - ( D x. A ) ) )
283 282 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( ( D - A ) x. D ) x. ( * ` ( D - A ) ) ) = ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) )
284 277 283 eqtrd
 |-  ( ( ph /\ E = F ) -> ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) = ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) )
285 276 284 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) - ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) ) )
286 268 negcld
 |-  ( ( ph /\ E = F ) -> -u ( D x. A ) e. CC )
287 261 268 subcld
 |-  ( ( ph /\ E = F ) -> ( ( D ^ 2 ) - ( D x. A ) ) e. CC )
288 286 287 219 subdird
 |-  ( ( ph /\ E = F ) -> ( ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) x. ( * ` ( D - A ) ) ) = ( ( -u ( D x. A ) x. ( * ` ( D - A ) ) ) - ( ( ( D ^ 2 ) - ( D x. A ) ) x. ( * ` ( D - A ) ) ) ) )
289 286 268 addcomd
 |-  ( ( ph /\ E = F ) -> ( -u ( D x. A ) + ( D x. A ) ) = ( ( D x. A ) + -u ( D x. A ) ) )
290 268 268 negsubd
 |-  ( ( ph /\ E = F ) -> ( ( D x. A ) + -u ( D x. A ) ) = ( ( D x. A ) - ( D x. A ) ) )
291 268 subidd
 |-  ( ( ph /\ E = F ) -> ( ( D x. A ) - ( D x. A ) ) = 0 )
292 289 290 291 3eqtrd
 |-  ( ( ph /\ E = F ) -> ( -u ( D x. A ) + ( D x. A ) ) = 0 )
293 292 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( -u ( D x. A ) + ( D x. A ) ) - ( D ^ 2 ) ) = ( 0 - ( D ^ 2 ) ) )
294 286 261 268 subsub3d
 |-  ( ( ph /\ E = F ) -> ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) = ( ( -u ( D x. A ) + ( D x. A ) ) - ( D ^ 2 ) ) )
295 df-neg
 |-  -u ( D ^ 2 ) = ( 0 - ( D ^ 2 ) )
296 295 a1i
 |-  ( ( ph /\ E = F ) -> -u ( D ^ 2 ) = ( 0 - ( D ^ 2 ) ) )
297 293 294 296 3eqtr4d
 |-  ( ( ph /\ E = F ) -> ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) = -u ( D ^ 2 ) )
298 297 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( -u ( D x. A ) - ( ( D ^ 2 ) - ( D x. A ) ) ) x. ( * ` ( D - A ) ) ) = ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) )
299 285 288 298 3eqtr2d
 |-  ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( ( * ` D ) x. ( D x. A ) ) ) - ( ( ( D - A ) x. ( * ` ( D - A ) ) ) x. D ) ) = ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) )
300 272 275 299 3eqtrd
 |-  ( ( ph /\ E = F ) -> ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) = ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) )
301 245 eqcomd
 |-  ( ( ph /\ E = F ) -> ( ( * ` D ) - ( * ` A ) ) = ( * ` ( D - A ) ) )
302 300 301 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) )
303 261 negcld
 |-  ( ( ph /\ E = F ) -> -u ( D ^ 2 ) e. CC )
304 303 219 250 divcan4d
 |-  ( ( ph /\ E = F ) -> ( ( -u ( D ^ 2 ) x. ( * ` ( D - A ) ) ) / ( * ` ( D - A ) ) ) = -u ( D ^ 2 ) )
305 302 304 eqtr2d
 |-  ( ( ph /\ E = F ) -> -u ( D ^ 2 ) = ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) )
306 261 305 negcon1ad
 |-  ( ( ph /\ E = F ) -> -u ( ( ( ( ( * ` A ) x. ( D x. A ) ) - ( P x. D ) ) - ( ( ( * ` D ) x. ( D x. A ) ) - ( Q x. A ) ) ) / ( ( * ` D ) - ( * ` A ) ) ) = ( D ^ 2 ) )
307 15 306 eqtrid
 |-  ( ( ph /\ E = F ) -> N = ( D ^ 2 ) )
308 260 307 oveq12d
 |-  ( ( ph /\ E = F ) -> ( ( M x. X ) + N ) = ( -u ( 2 x. ( X x. D ) ) + ( D ^ 2 ) ) )
309 308 oveq2d
 |-  ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. D ) ) + ( D ^ 2 ) ) ) )
310 197 sqcld
 |-  ( ( ph /\ E = F ) -> ( X ^ 2 ) e. CC )
311 197 198 mulcld
 |-  ( ( ph /\ E = F ) -> ( X x. D ) e. CC )
312 247 311 mulcld
 |-  ( ( ph /\ E = F ) -> ( 2 x. ( X x. D ) ) e. CC )
313 312 negcld
 |-  ( ( ph /\ E = F ) -> -u ( 2 x. ( X x. D ) ) e. CC )
314 310 313 261 addassd
 |-  ( ( ph /\ E = F ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) = ( ( X ^ 2 ) + ( -u ( 2 x. ( X x. D ) ) + ( D ^ 2 ) ) ) )
315 310 312 negsubd
 |-  ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + -u ( 2 x. ( X x. D ) ) ) = ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) )
316 315 oveq1d
 |-  ( ( ph /\ E = F ) -> ( ( ( X ^ 2 ) + -u ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) )
317 309 314 316 3eqtr2d
 |-  ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) )
318 binom2sub
 |-  ( ( X e. CC /\ D e. CC ) -> ( ( X - D ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) )
319 197 198 318 syl2anc
 |-  ( ( ph /\ E = F ) -> ( ( X - D ) ^ 2 ) = ( ( ( X ^ 2 ) - ( 2 x. ( X x. D ) ) ) + ( D ^ 2 ) ) )
320 204 sq0id
 |-  ( ( ph /\ E = F ) -> ( ( X - D ) ^ 2 ) = 0 )
321 317 319 320 3eqtr2d
 |-  ( ( ph /\ E = F ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )
322 1 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> S C_ CC )
323 2 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> A e. S )
324 3 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> B e. S )
325 4 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> C e. S )
326 5 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> D e. S )
327 6 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> E e. S )
328 7 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> F e. S )
329 8 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> X e. CC )
330 9 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> A =/= D )
331 10 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> ( abs ` ( X - A ) ) = ( abs ` ( B - C ) ) )
332 11 adantr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) )
333 simprl
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> B =/= C )
334 simprr
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> E =/= F )
335 322 323 324 325 326 327 328 329 330 331 332 12 13 14 15 333 334 constrrtcclem
 |-  ( ( ph /\ ( B =/= C /\ E =/= F ) ) -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )
336 181 321 335 pm2.61da2ne
 |-  ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )