Step |
Hyp |
Ref |
Expression |
1 |
|
constrrtcc.s |
|
2 |
|
constrrtcc.a |
|
3 |
|
constrrtcc.b |
|
4 |
|
constrrtcc.c |
|
5 |
|
constrrtcc.d |
|
6 |
|
constrrtcc.e |
|
7 |
|
constrrtcc.f |
|
8 |
|
constrrtcc.x |
|
9 |
|
constrrtcc.1 |
|
10 |
|
constrrtcc.2 |
|
11 |
|
constrrtcc.3 |
|
12 |
|
constrrtcc.4 |
|
13 |
|
constrrtcc.5 |
|
14 |
|
constrrtcc.m |
|
15 |
|
constrrtcc.n |
|
16 |
14
|
a1i |
|
17 |
1 6
|
sseldd |
|
18 |
1 7
|
sseldd |
|
19 |
17 18
|
subcld |
|
20 |
19
|
adantr |
|
21 |
20
|
absvalsqd |
|
22 |
13 21
|
eqtr4id |
|
23 |
8
|
adantr |
|
24 |
1 2
|
sseldd |
|
25 |
24
|
adantr |
|
26 |
8 24
|
subcld |
|
27 |
26
|
adantr |
|
28 |
10
|
adantr |
|
29 |
1 3
|
sseldd |
|
30 |
29
|
adantr |
|
31 |
|
simpr |
|
32 |
30 31
|
subeq0bd |
|
33 |
32
|
abs00bd |
|
34 |
28 33
|
eqtrd |
|
35 |
27 34
|
abs00d |
|
36 |
23 25 35
|
subeq0d |
|
37 |
36
|
fvoveq1d |
|
38 |
11
|
adantr |
|
39 |
1 5
|
sseldd |
|
40 |
39
|
adantr |
|
41 |
25 40
|
abssubd |
|
42 |
37 38 41
|
3eqtr3d |
|
43 |
42
|
oveq1d |
|
44 |
39 24
|
subcld |
|
45 |
44
|
absvalsqd |
|
46 |
45
|
adantr |
|
47 |
22 43 46
|
3eqtrd |
|
48 |
47
|
oveq1d |
|
49 |
32
|
oveq1d |
|
50 |
1 4
|
sseldd |
|
51 |
29 50
|
subcld |
|
52 |
51
|
cjcld |
|
53 |
52
|
adantr |
|
54 |
53
|
mul02d |
|
55 |
49 54
|
eqtrd |
|
56 |
12 55
|
eqtrid |
|
57 |
56
|
oveq1d |
|
58 |
48 57
|
oveq12d |
|
59 |
44
|
adantr |
|
60 |
59
|
cjcld |
|
61 |
59 60
|
mulcld |
|
62 |
40
|
cjcld |
|
63 |
40 25
|
addcld |
|
64 |
62 63
|
mulcld |
|
65 |
|
0cnd |
|
66 |
25
|
cjcld |
|
67 |
66 63
|
mulcld |
|
68 |
61 64 65 67
|
sub4d |
|
69 |
61
|
subid1d |
|
70 |
39 24
|
cjsubd |
|
71 |
70
|
oveq1d |
|
72 |
44
|
cjcld |
|
73 |
39 24
|
addcld |
|
74 |
72 73
|
mulcomd |
|
75 |
39
|
cjcld |
|
76 |
24
|
cjcld |
|
77 |
75 76 73
|
subdird |
|
78 |
71 74 77
|
3eqtr3rd |
|
79 |
78
|
adantr |
|
80 |
69 79
|
oveq12d |
|
81 |
58 68 80
|
3eqtrd |
|
82 |
59 63 60
|
subdird |
|
83 |
63 59
|
negsubdi2d |
|
84 |
40 25 25
|
pnncand |
|
85 |
25
|
2timesd |
|
86 |
84 85
|
eqtr4d |
|
87 |
86
|
negeqd |
|
88 |
83 87
|
eqtr3d |
|
89 |
88
|
oveq1d |
|
90 |
81 82 89
|
3eqtr2rd |
|
91 |
70
|
adantr |
|
92 |
90 91
|
oveq12d |
|
93 |
|
2cnd |
|
94 |
93 25
|
mulcld |
|
95 |
94
|
negcld |
|
96 |
9
|
necomd |
|
97 |
39 24 96
|
subne0d |
|
98 |
44 97
|
cjne0d |
|
99 |
98
|
adantr |
|
100 |
95 60 99
|
divcan4d |
|
101 |
16 92 100
|
3eqtr2d |
|
102 |
101
|
oveq1d |
|
103 |
94 23
|
mulneg1d |
|
104 |
93 25 23
|
mulassd |
|
105 |
25 23
|
mulcomd |
|
106 |
105
|
oveq2d |
|
107 |
104 106
|
eqtrd |
|
108 |
107
|
negeqd |
|
109 |
102 103 108
|
3eqtrd |
|
110 |
25
|
sqcld |
|
111 |
56
|
oveq1d |
|
112 |
40
|
mul02d |
|
113 |
111 112
|
eqtrd |
|
114 |
113
|
oveq2d |
|
115 |
40 25
|
mulcld |
|
116 |
66 115
|
mulcld |
|
117 |
116
|
subid1d |
|
118 |
114 117
|
eqtrd |
|
119 |
47
|
oveq1d |
|
120 |
119
|
oveq2d |
|
121 |
118 120
|
oveq12d |
|
122 |
62 115
|
mulcld |
|
123 |
61 25
|
mulcld |
|
124 |
116 122 123
|
subsubd |
|
125 |
70
|
negeqd |
|
126 |
75 76
|
negsubdi2d |
|
127 |
125 126
|
eqtr2d |
|
128 |
127
|
oveq1d |
|
129 |
39 24
|
mulcld |
|
130 |
76 75 129
|
subdird |
|
131 |
72 129
|
mulcomd |
|
132 |
131
|
negeqd |
|
133 |
72 129
|
mulneg1d |
|
134 |
129 72
|
mulneg1d |
|
135 |
132 133 134
|
3eqtr4d |
|
136 |
128 130 135
|
3eqtr3d |
|
137 |
136
|
adantr |
|
138 |
59 60 25
|
mul32d |
|
139 |
40 25 25
|
subdird |
|
140 |
25
|
sqvald |
|
141 |
140
|
oveq2d |
|
142 |
139 141
|
eqtr4d |
|
143 |
142
|
oveq1d |
|
144 |
138 143
|
eqtrd |
|
145 |
137 144
|
oveq12d |
|
146 |
115
|
negcld |
|
147 |
115 110
|
subcld |
|
148 |
146 147 60
|
adddird |
|
149 |
115
|
subidd |
|
150 |
149
|
oveq1d |
|
151 |
146 147
|
addcomd |
|
152 |
147 115
|
negsubd |
|
153 |
115 110 115
|
sub32d |
|
154 |
151 152 153
|
3eqtrd |
|
155 |
|
df-neg |
|
156 |
155
|
a1i |
|
157 |
150 154 156
|
3eqtr4d |
|
158 |
157
|
oveq1d |
|
159 |
145 148 158
|
3eqtr2d |
|
160 |
121 124 159
|
3eqtrd |
|
161 |
91
|
eqcomd |
|
162 |
160 161
|
oveq12d |
|
163 |
110
|
negcld |
|
164 |
163 60 99
|
divcan4d |
|
165 |
162 164
|
eqtr2d |
|
166 |
110 165
|
negcon1ad |
|
167 |
15 166
|
eqtrid |
|
168 |
109 167
|
oveq12d |
|
169 |
168
|
oveq2d |
|
170 |
23
|
sqcld |
|
171 |
23 25
|
mulcld |
|
172 |
93 171
|
mulcld |
|
173 |
172
|
negcld |
|
174 |
170 173 110
|
addassd |
|
175 |
170 172
|
negsubd |
|
176 |
175
|
oveq1d |
|
177 |
169 174 176
|
3eqtr2d |
|
178 |
|
binom2sub |
|
179 |
23 25 178
|
syl2anc |
|
180 |
35
|
sq0id |
|
181 |
177 179 180
|
3eqtr2d |
|
182 |
14
|
a1i |
|
183 |
17
|
adantr |
|
184 |
|
simpr |
|
185 |
183 184
|
subeq0bd |
|
186 |
185
|
oveq1d |
|
187 |
19
|
cjcld |
|
188 |
187
|
adantr |
|
189 |
188
|
mul02d |
|
190 |
186 189
|
eqtrd |
|
191 |
13 190
|
eqtrid |
|
192 |
191
|
oveq1d |
|
193 |
51
|
adantr |
|
194 |
193
|
absvalsqd |
|
195 |
12 194
|
eqtr4id |
|
196 |
10
|
adantr |
|
197 |
8
|
adantr |
|
198 |
39
|
adantr |
|
199 |
8 39
|
subcld |
|
200 |
199
|
adantr |
|
201 |
11
|
adantr |
|
202 |
185
|
abs00bd |
|
203 |
201 202
|
eqtrd |
|
204 |
200 203
|
abs00d |
|
205 |
197 198 204
|
subeq0d |
|
206 |
205
|
fvoveq1d |
|
207 |
196 206
|
eqtr3d |
|
208 |
207
|
oveq1d |
|
209 |
45
|
adantr |
|
210 |
195 208 209
|
3eqtrd |
|
211 |
210
|
oveq1d |
|
212 |
192 211
|
oveq12d |
|
213 |
|
0cnd |
|
214 |
198
|
cjcld |
|
215 |
24
|
adantr |
|
216 |
198 215
|
addcld |
|
217 |
214 216
|
mulcld |
|
218 |
44
|
adantr |
|
219 |
218
|
cjcld |
|
220 |
218 219
|
mulcld |
|
221 |
215
|
cjcld |
|
222 |
221 216
|
mulcld |
|
223 |
213 217 220 222
|
sub4d |
|
224 |
218 219
|
mulneg1d |
|
225 |
198 215
|
negsubdi2d |
|
226 |
225
|
oveq1d |
|
227 |
|
df-neg |
|
228 |
227
|
a1i |
|
229 |
224 226 228
|
3eqtr3rd |
|
230 |
78
|
adantr |
|
231 |
229 230
|
oveq12d |
|
232 |
212 223 231
|
3eqtrd |
|
233 |
215 198
|
subcld |
|
234 |
233 216 219
|
subdird |
|
235 |
216 233
|
negsubdi2d |
|
236 |
198
|
2timesd |
|
237 |
215 198 198
|
pnncand |
|
238 |
215 198
|
addcomd |
|
239 |
238
|
oveq1d |
|
240 |
236 237 239
|
3eqtr2rd |
|
241 |
240
|
negeqd |
|
242 |
235 241
|
eqtr3d |
|
243 |
242
|
oveq1d |
|
244 |
232 234 243
|
3eqtr2rd |
|
245 |
70
|
adantr |
|
246 |
244 245
|
oveq12d |
|
247 |
|
2cnd |
|
248 |
247 198
|
mulcld |
|
249 |
248
|
negcld |
|
250 |
98
|
adantr |
|
251 |
249 219 250
|
divcan4d |
|
252 |
182 246 251
|
3eqtr2d |
|
253 |
252
|
oveq1d |
|
254 |
248 197
|
mulneg1d |
|
255 |
247 198 197
|
mulassd |
|
256 |
198 197
|
mulcomd |
|
257 |
256
|
oveq2d |
|
258 |
255 257
|
eqtrd |
|
259 |
258
|
negeqd |
|
260 |
253 254 259
|
3eqtrd |
|
261 |
198
|
sqcld |
|
262 |
210
|
oveq1d |
|
263 |
262
|
oveq2d |
|
264 |
191
|
oveq1d |
|
265 |
215
|
mul02d |
|
266 |
264 265
|
eqtrd |
|
267 |
266
|
oveq2d |
|
268 |
198 215
|
mulcld |
|
269 |
214 268
|
mulcld |
|
270 |
269
|
subid1d |
|
271 |
267 270
|
eqtrd |
|
272 |
263 271
|
oveq12d |
|
273 |
221 268
|
mulcld |
|
274 |
220 198
|
mulcld |
|
275 |
273 274 269
|
sub32d |
|
276 |
136
|
adantr |
|
277 |
218 219 198
|
mul32d |
|
278 |
198 215 198
|
subdird |
|
279 |
198
|
sqvald |
|
280 |
198 215
|
mulcomd |
|
281 |
279 280
|
oveq12d |
|
282 |
278 281
|
eqtr4d |
|
283 |
282
|
oveq1d |
|
284 |
277 283
|
eqtrd |
|
285 |
276 284
|
oveq12d |
|
286 |
268
|
negcld |
|
287 |
261 268
|
subcld |
|
288 |
286 287 219
|
subdird |
|
289 |
286 268
|
addcomd |
|
290 |
268 268
|
negsubd |
|
291 |
268
|
subidd |
|
292 |
289 290 291
|
3eqtrd |
|
293 |
292
|
oveq1d |
|
294 |
286 261 268
|
subsub3d |
|
295 |
|
df-neg |
|
296 |
295
|
a1i |
|
297 |
293 294 296
|
3eqtr4d |
|
298 |
297
|
oveq1d |
|
299 |
285 288 298
|
3eqtr2d |
|
300 |
272 275 299
|
3eqtrd |
|
301 |
245
|
eqcomd |
|
302 |
300 301
|
oveq12d |
|
303 |
261
|
negcld |
|
304 |
303 219 250
|
divcan4d |
|
305 |
302 304
|
eqtr2d |
|
306 |
261 305
|
negcon1ad |
|
307 |
15 306
|
eqtrid |
|
308 |
260 307
|
oveq12d |
|
309 |
308
|
oveq2d |
|
310 |
197
|
sqcld |
|
311 |
197 198
|
mulcld |
|
312 |
247 311
|
mulcld |
|
313 |
312
|
negcld |
|
314 |
310 313 261
|
addassd |
|
315 |
310 312
|
negsubd |
|
316 |
315
|
oveq1d |
|
317 |
309 314 316
|
3eqtr2d |
|
318 |
|
binom2sub |
|
319 |
197 198 318
|
syl2anc |
|
320 |
204
|
sq0id |
|
321 |
317 319 320
|
3eqtr2d |
|
322 |
1
|
adantr |
|
323 |
2
|
adantr |
|
324 |
3
|
adantr |
|
325 |
4
|
adantr |
|
326 |
5
|
adantr |
|
327 |
6
|
adantr |
|
328 |
7
|
adantr |
|
329 |
8
|
adantr |
|
330 |
9
|
adantr |
|
331 |
10
|
adantr |
|
332 |
11
|
adantr |
|
333 |
|
simprl |
|
334 |
|
simprr |
|
335 |
322 323 324 325 326 327 328 329 330 331 332 12 13 14 15 333 334
|
constrrtcclem |
|
336 |
181 321 335
|
pm2.61da2ne |
|