Metamath Proof Explorer


Theorem constrrtcc

Description: In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses constrrtcc.s φ S
constrrtcc.a φ A S
constrrtcc.b φ B S
constrrtcc.c φ C S
constrrtcc.d φ D S
constrrtcc.e φ E S
constrrtcc.f φ F S
constrrtcc.x φ X
constrrtcc.1 φ A D
constrrtcc.2 φ X A = B C
constrrtcc.3 φ X D = E F
constrrtcc.4 P = B C B C
constrrtcc.5 Q = E F E F
constrrtcc.m M = Q - D D + A - P A D + A D A
constrrtcc.n N = A D A - P D - D D A Q A D A
Assertion constrrtcc φ X 2 + M X + N = 0

Proof

Step Hyp Ref Expression
1 constrrtcc.s φ S
2 constrrtcc.a φ A S
3 constrrtcc.b φ B S
4 constrrtcc.c φ C S
5 constrrtcc.d φ D S
6 constrrtcc.e φ E S
7 constrrtcc.f φ F S
8 constrrtcc.x φ X
9 constrrtcc.1 φ A D
10 constrrtcc.2 φ X A = B C
11 constrrtcc.3 φ X D = E F
12 constrrtcc.4 P = B C B C
13 constrrtcc.5 Q = E F E F
14 constrrtcc.m M = Q - D D + A - P A D + A D A
15 constrrtcc.n N = A D A - P D - D D A Q A D A
16 14 a1i φ B = C M = Q - D D + A - P A D + A D A
17 1 6 sseldd φ E
18 1 7 sseldd φ F
19 17 18 subcld φ E F
20 19 adantr φ B = C E F
21 20 absvalsqd φ B = C E F 2 = E F E F
22 13 21 eqtr4id φ B = C Q = E F 2
23 8 adantr φ B = C X
24 1 2 sseldd φ A
25 24 adantr φ B = C A
26 8 24 subcld φ X A
27 26 adantr φ B = C X A
28 10 adantr φ B = C X A = B C
29 1 3 sseldd φ B
30 29 adantr φ B = C B
31 simpr φ B = C B = C
32 30 31 subeq0bd φ B = C B C = 0
33 32 abs00bd φ B = C B C = 0
34 28 33 eqtrd φ B = C X A = 0
35 27 34 abs00d φ B = C X A = 0
36 23 25 35 subeq0d φ B = C X = A
37 36 fvoveq1d φ B = C X D = A D
38 11 adantr φ B = C X D = E F
39 1 5 sseldd φ D
40 39 adantr φ B = C D
41 25 40 abssubd φ B = C A D = D A
42 37 38 41 3eqtr3d φ B = C E F = D A
43 42 oveq1d φ B = C E F 2 = D A 2
44 39 24 subcld φ D A
45 44 absvalsqd φ D A 2 = D A D A
46 45 adantr φ B = C D A 2 = D A D A
47 22 43 46 3eqtrd φ B = C Q = D A D A
48 47 oveq1d φ B = C Q D D + A = D A D A D D + A
49 32 oveq1d φ B = C B C B C = 0 B C
50 1 4 sseldd φ C
51 29 50 subcld φ B C
52 51 cjcld φ B C
53 52 adantr φ B = C B C
54 53 mul02d φ B = C 0 B C = 0
55 49 54 eqtrd φ B = C B C B C = 0
56 12 55 eqtrid φ B = C P = 0
57 56 oveq1d φ B = C P A D + A = 0 A D + A
58 48 57 oveq12d φ B = C Q - D D + A - P A D + A = D A D A - D D + A - 0 A D + A
59 44 adantr φ B = C D A
60 59 cjcld φ B = C D A
61 59 60 mulcld φ B = C D A D A
62 40 cjcld φ B = C D
63 40 25 addcld φ B = C D + A
64 62 63 mulcld φ B = C D D + A
65 0cnd φ B = C 0
66 25 cjcld φ B = C A
67 66 63 mulcld φ B = C A D + A
68 61 64 65 67 sub4d φ B = C D A D A - D D + A - 0 A D + A = D A D A - 0 - D D + A A D + A
69 61 subid1d φ B = C D A D A 0 = D A D A
70 39 24 cjsubd φ D A = D A
71 70 oveq1d φ D A D + A = D A D + A
72 44 cjcld φ D A
73 39 24 addcld φ D + A
74 72 73 mulcomd φ D A D + A = D + A D A
75 39 cjcld φ D
76 24 cjcld φ A
77 75 76 73 subdird φ D A D + A = D D + A A D + A
78 71 74 77 3eqtr3rd φ D D + A A D + A = D + A D A
79 78 adantr φ B = C D D + A A D + A = D + A D A
80 69 79 oveq12d φ B = C D A D A - 0 - D D + A A D + A = D A D A D + A D A
81 58 68 80 3eqtrd φ B = C Q - D D + A - P A D + A = D A D A D + A D A
82 59 63 60 subdird φ B = C D - A - D + A D A = D A D A D + A D A
83 63 59 negsubdi2d φ B = C D + A - D A = D - A - D + A
84 40 25 25 pnncand φ B = C D + A - D A = A + A
85 25 2timesd φ B = C 2 A = A + A
86 84 85 eqtr4d φ B = C D + A - D A = 2 A
87 86 negeqd φ B = C D + A - D A = 2 A
88 83 87 eqtr3d φ B = C D - A - D + A = 2 A
89 88 oveq1d φ B = C D - A - D + A D A = 2 A D A
90 81 82 89 3eqtr2rd φ B = C 2 A D A = Q - D D + A - P A D + A
91 70 adantr φ B = C D A = D A
92 90 91 oveq12d φ B = C 2 A D A D A = Q - D D + A - P A D + A D A
93 2cnd φ B = C 2
94 93 25 mulcld φ B = C 2 A
95 94 negcld φ B = C 2 A
96 9 necomd φ D A
97 39 24 96 subne0d φ D A 0
98 44 97 cjne0d φ D A 0
99 98 adantr φ B = C D A 0
100 95 60 99 divcan4d φ B = C 2 A D A D A = 2 A
101 16 92 100 3eqtr2d φ B = C M = 2 A
102 101 oveq1d φ B = C M X = 2 A X
103 94 23 mulneg1d φ B = C 2 A X = 2 A X
104 93 25 23 mulassd φ B = C 2 A X = 2 A X
105 25 23 mulcomd φ B = C A X = X A
106 105 oveq2d φ B = C 2 A X = 2 X A
107 104 106 eqtrd φ B = C 2 A X = 2 X A
108 107 negeqd φ B = C 2 A X = 2 X A
109 102 103 108 3eqtrd φ B = C M X = 2 X A
110 25 sqcld φ B = C A 2
111 56 oveq1d φ B = C P D = 0 D
112 40 mul02d φ B = C 0 D = 0
113 111 112 eqtrd φ B = C P D = 0
114 113 oveq2d φ B = C A D A P D = A D A 0
115 40 25 mulcld φ B = C D A
116 66 115 mulcld φ B = C A D A
117 116 subid1d φ B = C A D A 0 = A D A
118 114 117 eqtrd φ B = C A D A P D = A D A
119 47 oveq1d φ B = C Q A = D A D A A
120 119 oveq2d φ B = C D D A Q A = D D A D A D A A
121 118 120 oveq12d φ B = C A D A - P D - D D A Q A = A D A D D A D A D A A
122 62 115 mulcld φ B = C D D A
123 61 25 mulcld φ B = C D A D A A
124 116 122 123 subsubd φ B = C A D A D D A D A D A A = A D A - D D A + D A D A A
125 70 negeqd φ D A = D A
126 75 76 negsubdi2d φ D A = A D
127 125 126 eqtr2d φ A D = D A
128 127 oveq1d φ A D D A = D A D A
129 39 24 mulcld φ D A
130 76 75 129 subdird φ A D D A = A D A D D A
131 72 129 mulcomd φ D A D A = D A D A
132 131 negeqd φ D A D A = D A D A
133 72 129 mulneg1d φ D A D A = D A D A
134 129 72 mulneg1d φ D A D A = D A D A
135 132 133 134 3eqtr4d φ D A D A = D A D A
136 128 130 135 3eqtr3d φ A D A D D A = D A D A
137 136 adantr φ B = C A D A D D A = D A D A
138 59 60 25 mul32d φ B = C D A D A A = D A A D A
139 40 25 25 subdird φ B = C D A A = D A A A
140 25 sqvald φ B = C A 2 = A A
141 140 oveq2d φ B = C D A A 2 = D A A A
142 139 141 eqtr4d φ B = C D A A = D A A 2
143 142 oveq1d φ B = C D A A D A = D A A 2 D A
144 138 143 eqtrd φ B = C D A D A A = D A A 2 D A
145 137 144 oveq12d φ B = C A D A - D D A + D A D A A = D A D A + D A A 2 D A
146 115 negcld φ B = C D A
147 115 110 subcld φ B = C D A A 2
148 146 147 60 adddird φ B = C D A + D A - A 2 D A = D A D A + D A A 2 D A
149 115 subidd φ B = C D A D A = 0
150 149 oveq1d φ B = C D A - D A - A 2 = 0 A 2
151 146 147 addcomd φ B = C D A + D A - A 2 = D A - A 2 + D A
152 147 115 negsubd φ B = C D A - A 2 + D A = D A - A 2 - D A
153 115 110 115 sub32d φ B = C D A - A 2 - D A = D A - D A - A 2
154 151 152 153 3eqtrd φ B = C D A + D A - A 2 = D A - D A - A 2
155 df-neg A 2 = 0 A 2
156 155 a1i φ B = C A 2 = 0 A 2
157 150 154 156 3eqtr4d φ B = C D A + D A - A 2 = A 2
158 157 oveq1d φ B = C D A + D A - A 2 D A = A 2 D A
159 145 148 158 3eqtr2d φ B = C A D A - D D A + D A D A A = A 2 D A
160 121 124 159 3eqtrd φ B = C A D A - P D - D D A Q A = A 2 D A
161 91 eqcomd φ B = C D A = D A
162 160 161 oveq12d φ B = C A D A - P D - D D A Q A D A = A 2 D A D A
163 110 negcld φ B = C A 2
164 163 60 99 divcan4d φ B = C A 2 D A D A = A 2
165 162 164 eqtr2d φ B = C A 2 = A D A - P D - D D A Q A D A
166 110 165 negcon1ad φ B = C A D A - P D - D D A Q A D A = A 2
167 15 166 eqtrid φ B = C N = A 2
168 109 167 oveq12d φ B = C M X + N = - 2 X A + A 2
169 168 oveq2d φ B = C X 2 + M X + N = X 2 + 2 X A + A 2
170 23 sqcld φ B = C X 2
171 23 25 mulcld φ B = C X A
172 93 171 mulcld φ B = C 2 X A
173 172 negcld φ B = C 2 X A
174 170 173 110 addassd φ B = C X 2 + 2 X A + A 2 = X 2 + 2 X A + A 2
175 170 172 negsubd φ B = C X 2 + 2 X A = X 2 2 X A
176 175 oveq1d φ B = C X 2 + 2 X A + A 2 = X 2 - 2 X A + A 2
177 169 174 176 3eqtr2d φ B = C X 2 + M X + N = X 2 - 2 X A + A 2
178 binom2sub X A X A 2 = X 2 - 2 X A + A 2
179 23 25 178 syl2anc φ B = C X A 2 = X 2 - 2 X A + A 2
180 35 sq0id φ B = C X A 2 = 0
181 177 179 180 3eqtr2d φ B = C X 2 + M X + N = 0
182 14 a1i φ E = F M = Q - D D + A - P A D + A D A
183 17 adantr φ E = F E
184 simpr φ E = F E = F
185 183 184 subeq0bd φ E = F E F = 0
186 185 oveq1d φ E = F E F E F = 0 E F
187 19 cjcld φ E F
188 187 adantr φ E = F E F
189 188 mul02d φ E = F 0 E F = 0
190 186 189 eqtrd φ E = F E F E F = 0
191 13 190 eqtrid φ E = F Q = 0
192 191 oveq1d φ E = F Q D D + A = 0 D D + A
193 51 adantr φ E = F B C
194 193 absvalsqd φ E = F B C 2 = B C B C
195 12 194 eqtr4id φ E = F P = B C 2
196 10 adantr φ E = F X A = B C
197 8 adantr φ E = F X
198 39 adantr φ E = F D
199 8 39 subcld φ X D
200 199 adantr φ E = F X D
201 11 adantr φ E = F X D = E F
202 185 abs00bd φ E = F E F = 0
203 201 202 eqtrd φ E = F X D = 0
204 200 203 abs00d φ E = F X D = 0
205 197 198 204 subeq0d φ E = F X = D
206 205 fvoveq1d φ E = F X A = D A
207 196 206 eqtr3d φ E = F B C = D A
208 207 oveq1d φ E = F B C 2 = D A 2
209 45 adantr φ E = F D A 2 = D A D A
210 195 208 209 3eqtrd φ E = F P = D A D A
211 210 oveq1d φ E = F P A D + A = D A D A A D + A
212 192 211 oveq12d φ E = F Q - D D + A - P A D + A = 0 - D D + A - D A D A A D + A
213 0cnd φ E = F 0
214 198 cjcld φ E = F D
215 24 adantr φ E = F A
216 198 215 addcld φ E = F D + A
217 214 216 mulcld φ E = F D D + A
218 44 adantr φ E = F D A
219 218 cjcld φ E = F D A
220 218 219 mulcld φ E = F D A D A
221 215 cjcld φ E = F A
222 221 216 mulcld φ E = F A D + A
223 213 217 220 222 sub4d φ E = F 0 - D D + A - D A D A A D + A = 0 - D A D A - D D + A A D + A
224 218 219 mulneg1d φ E = F D A D A = D A D A
225 198 215 negsubdi2d φ E = F D A = A D
226 225 oveq1d φ E = F D A D A = A D D A
227 df-neg D A D A = 0 D A D A
228 227 a1i φ E = F D A D A = 0 D A D A
229 224 226 228 3eqtr3rd φ E = F 0 D A D A = A D D A
230 78 adantr φ E = F D D + A A D + A = D + A D A
231 229 230 oveq12d φ E = F 0 - D A D A - D D + A A D + A = A D D A D + A D A
232 212 223 231 3eqtrd φ E = F Q - D D + A - P A D + A = A D D A D + A D A
233 215 198 subcld φ E = F A D
234 233 216 219 subdird φ E = F A - D - D + A D A = A D D A D + A D A
235 216 233 negsubdi2d φ E = F D + A - A D = A - D - D + A
236 198 2timesd φ E = F 2 D = D + D
237 215 198 198 pnncand φ E = F A + D - A D = D + D
238 215 198 addcomd φ E = F A + D = D + A
239 238 oveq1d φ E = F A + D - A D = D + A - A D
240 236 237 239 3eqtr2rd φ E = F D + A - A D = 2 D
241 240 negeqd φ E = F D + A - A D = 2 D
242 235 241 eqtr3d φ E = F A - D - D + A = 2 D
243 242 oveq1d φ E = F A - D - D + A D A = 2 D D A
244 232 234 243 3eqtr2rd φ E = F 2 D D A = Q - D D + A - P A D + A
245 70 adantr φ E = F D A = D A
246 244 245 oveq12d φ E = F 2 D D A D A = Q - D D + A - P A D + A D A
247 2cnd φ E = F 2
248 247 198 mulcld φ E = F 2 D
249 248 negcld φ E = F 2 D
250 98 adantr φ E = F D A 0
251 249 219 250 divcan4d φ E = F 2 D D A D A = 2 D
252 182 246 251 3eqtr2d φ E = F M = 2 D
253 252 oveq1d φ E = F M X = 2 D X
254 248 197 mulneg1d φ E = F 2 D X = 2 D X
255 247 198 197 mulassd φ E = F 2 D X = 2 D X
256 198 197 mulcomd φ E = F D X = X D
257 256 oveq2d φ E = F 2 D X = 2 X D
258 255 257 eqtrd φ E = F 2 D X = 2 X D
259 258 negeqd φ E = F 2 D X = 2 X D
260 253 254 259 3eqtrd φ E = F M X = 2 X D
261 198 sqcld φ E = F D 2
262 210 oveq1d φ E = F P D = D A D A D
263 262 oveq2d φ E = F A D A P D = A D A D A D A D
264 191 oveq1d φ E = F Q A = 0 A
265 215 mul02d φ E = F 0 A = 0
266 264 265 eqtrd φ E = F Q A = 0
267 266 oveq2d φ E = F D D A Q A = D D A 0
268 198 215 mulcld φ E = F D A
269 214 268 mulcld φ E = F D D A
270 269 subid1d φ E = F D D A 0 = D D A
271 267 270 eqtrd φ E = F D D A Q A = D D A
272 263 271 oveq12d φ E = F A D A - P D - D D A Q A = A D A - D A D A D - D D A
273 221 268 mulcld φ E = F A D A
274 220 198 mulcld φ E = F D A D A D
275 273 274 269 sub32d φ E = F A D A - D A D A D - D D A = A D A - D D A - D A D A D
276 136 adantr φ E = F A D A D D A = D A D A
277 218 219 198 mul32d φ E = F D A D A D = D A D D A
278 198 215 198 subdird φ E = F D A D = D D A D
279 198 sqvald φ E = F D 2 = D D
280 198 215 mulcomd φ E = F D A = A D
281 279 280 oveq12d φ E = F D 2 D A = D D A D
282 278 281 eqtr4d φ E = F D A D = D 2 D A
283 282 oveq1d φ E = F D A D D A = D 2 D A D A
284 277 283 eqtrd φ E = F D A D A D = D 2 D A D A
285 276 284 oveq12d φ E = F A D A - D D A - D A D A D = D A D A D 2 D A D A
286 268 negcld φ E = F D A
287 261 268 subcld φ E = F D 2 D A
288 286 287 219 subdird φ E = F - D A - D 2 D A D A = D A D A D 2 D A D A
289 286 268 addcomd φ E = F - D A + D A = D A + D A
290 268 268 negsubd φ E = F D A + D A = D A D A
291 268 subidd φ E = F D A D A = 0
292 289 290 291 3eqtrd φ E = F - D A + D A = 0
293 292 oveq1d φ E = F D A + D A - D 2 = 0 D 2
294 286 261 268 subsub3d φ E = F - D A - D 2 D A = D A + D A - D 2
295 df-neg D 2 = 0 D 2
296 295 a1i φ E = F D 2 = 0 D 2
297 293 294 296 3eqtr4d φ E = F - D A - D 2 D A = D 2
298 297 oveq1d φ E = F - D A - D 2 D A D A = D 2 D A
299 285 288 298 3eqtr2d φ E = F A D A - D D A - D A D A D = D 2 D A
300 272 275 299 3eqtrd φ E = F A D A - P D - D D A Q A = D 2 D A
301 245 eqcomd φ E = F D A = D A
302 300 301 oveq12d φ E = F A D A - P D - D D A Q A D A = D 2 D A D A
303 261 negcld φ E = F D 2
304 303 219 250 divcan4d φ E = F D 2 D A D A = D 2
305 302 304 eqtr2d φ E = F D 2 = A D A - P D - D D A Q A D A
306 261 305 negcon1ad φ E = F A D A - P D - D D A Q A D A = D 2
307 15 306 eqtrid φ E = F N = D 2
308 260 307 oveq12d φ E = F M X + N = - 2 X D + D 2
309 308 oveq2d φ E = F X 2 + M X + N = X 2 + 2 X D + D 2
310 197 sqcld φ E = F X 2
311 197 198 mulcld φ E = F X D
312 247 311 mulcld φ E = F 2 X D
313 312 negcld φ E = F 2 X D
314 310 313 261 addassd φ E = F X 2 + 2 X D + D 2 = X 2 + 2 X D + D 2
315 310 312 negsubd φ E = F X 2 + 2 X D = X 2 2 X D
316 315 oveq1d φ E = F X 2 + 2 X D + D 2 = X 2 - 2 X D + D 2
317 309 314 316 3eqtr2d φ E = F X 2 + M X + N = X 2 - 2 X D + D 2
318 binom2sub X D X D 2 = X 2 - 2 X D + D 2
319 197 198 318 syl2anc φ E = F X D 2 = X 2 - 2 X D + D 2
320 204 sq0id φ E = F X D 2 = 0
321 317 319 320 3eqtr2d φ E = F X 2 + M X + N = 0
322 1 adantr φ B C E F S
323 2 adantr φ B C E F A S
324 3 adantr φ B C E F B S
325 4 adantr φ B C E F C S
326 5 adantr φ B C E F D S
327 6 adantr φ B C E F E S
328 7 adantr φ B C E F F S
329 8 adantr φ B C E F X
330 9 adantr φ B C E F A D
331 10 adantr φ B C E F X A = B C
332 11 adantr φ B C E F X D = E F
333 simprl φ B C E F B C
334 simprr φ B C E F E F
335 322 323 324 325 326 327 328 329 330 331 332 12 13 14 15 333 334 constrrtcclem φ B C E F X 2 + M X + N = 0
336 181 321 335 pm2.61da2ne φ X 2 + M X + N = 0