Metamath Proof Explorer


Theorem binom2sub

Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013)

Ref Expression
Assertion binom2sub ABAB2=A2-2AB+B2

Proof

Step Hyp Ref Expression
1 negcl BB
2 binom2 ABA+B2=A2+2AB+B2
3 1 2 sylan2 ABA+B2=A2+2AB+B2
4 negsub ABA+B=AB
5 4 oveq1d ABA+B2=AB2
6 3 5 eqtr3d ABA2+2AB+B2=AB2
7 mulneg2 ABAB=AB
8 7 oveq2d AB2AB=2AB
9 2cn 2
10 mulcl ABAB
11 mulneg2 2AB2AB=2AB
12 9 10 11 sylancr AB2AB=2AB
13 8 12 eqtr2d AB2AB=2AB
14 13 oveq2d ABA2+2AB=A2+2AB
15 sqcl AA2
16 15 adantr ABA2
17 mulcl 2AB2AB
18 9 10 17 sylancr AB2AB
19 16 18 negsubd ABA2+2AB=A22AB
20 14 19 eqtr3d ABA2+2AB=A22AB
21 sqneg BB2=B2
22 21 adantl ABB2=B2
23 20 22 oveq12d ABA2+2AB+B2=A2-2AB+B2
24 6 23 eqtr3d ABAB2=A2-2AB+B2