Metamath Proof Explorer


Theorem binom2sub1

Description: Special case of binom2sub where B = 1 . (Contributed by AV, 2-Aug-2021)

Ref Expression
Assertion binom2sub1 AA12=A2-2A+1

Proof

Step Hyp Ref Expression
1 1cnd A1
2 binom2sub A1A12=A2-2A1+12
3 1 2 mpdan AA12=A2-2A1+12
4 mulrid AA1=A
5 4 oveq2d A2A1=2A
6 5 oveq2d AA22A1=A22A
7 sq1 12=1
8 7 a1i A12=1
9 6 8 oveq12d AA2-2A1+12=A2-2A+1
10 3 9 eqtrd AA12=A2-2A+1