Metamath Proof Explorer


Theorem cjsubd

Description: Complex conjugate distributes over subtraction. (Contributed by Thierry Arnoux, 1-Jul-2025)

Ref Expression
Hypotheses cjsubd.1 φ A
cjsubd.2 φ B
Assertion cjsubd φ A B = A B

Proof

Step Hyp Ref Expression
1 cjsubd.1 φ A
2 cjsubd.2 φ B
3 cjsub A B A B = A B
4 1 2 3 syl2anc φ A B = A B