Description: Complex conjugate distributes over subtraction. (Contributed by Thierry Arnoux, 1-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cjsubd.1 | |- ( ph -> A e. CC ) |
|
| cjsubd.2 | |- ( ph -> B e. CC ) |
||
| Assertion | cjsubd | |- ( ph -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjsubd.1 | |- ( ph -> A e. CC ) |
|
| 2 | cjsubd.2 | |- ( ph -> B e. CC ) |
|
| 3 | cjsub | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |