Metamath Proof Explorer


Theorem cjsubd

Description: Complex conjugate distributes over subtraction. (Contributed by Thierry Arnoux, 1-Jul-2025)

Ref Expression
Hypotheses cjsubd.1
|- ( ph -> A e. CC )
cjsubd.2
|- ( ph -> B e. CC )
Assertion cjsubd
|- ( ph -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) )

Proof

Step Hyp Ref Expression
1 cjsubd.1
 |-  ( ph -> A e. CC )
2 cjsubd.2
 |-  ( ph -> B e. CC )
3 cjsub
 |-  ( ( A e. CC /\ B e. CC ) -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) )