Description: Complex conjugate distributes over subtraction. (Contributed by Thierry Arnoux, 1-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cjsubd.1 | |- ( ph -> A e. CC ) |
|
cjsubd.2 | |- ( ph -> B e. CC ) |
||
Assertion | cjsubd | |- ( ph -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjsubd.1 | |- ( ph -> A e. CC ) |
|
2 | cjsubd.2 | |- ( ph -> B e. CC ) |
|
3 | cjsub | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |