Metamath Proof Explorer


Theorem re0cj

Description: The conjugate of a pure imaginary number is its negative. (Contributed by Thierry Arnoux, 25-Jun-2025)

Ref Expression
Hypotheses re0cj.1 φ A
re0cj.2 φ A = 0
Assertion re0cj φ A = A

Proof

Step Hyp Ref Expression
1 re0cj.1 φ A
2 re0cj.2 φ A = 0
3 2 oveq1d φ A i A = 0 i A
4 df-neg i A = 0 i A
5 3 4 eqtr4di φ A i A = i A
6 1 remimd φ A = A i A
7 1 replimd φ A = A + i A
8 2 oveq1d φ A + i A = 0 + i A
9 ax-icn i
10 9 a1i φ i
11 1 imcld φ A
12 11 recnd φ A
13 10 12 mulcld φ i A
14 13 addlidd φ 0 + i A = i A
15 7 8 14 3eqtrd φ A = i A
16 15 negeqd φ A = i A
17 5 6 16 3eqtr4d φ A = A