Step |
Hyp |
Ref |
Expression |
1 |
|
re0cj.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
re0cj.2 |
⊢ ( 𝜑 → ( ℜ ‘ 𝐴 ) = 0 ) |
3 |
2
|
oveq1d |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) = ( 0 − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
4 |
|
df-neg |
⊢ - ( i · ( ℑ ‘ 𝐴 ) ) = ( 0 − ( i · ( ℑ ‘ 𝐴 ) ) ) |
5 |
3 4
|
eqtr4di |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
6 |
1
|
remimd |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
7 |
1
|
replimd |
⊢ ( 𝜑 → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
8 |
2
|
oveq1d |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( 0 + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
9 |
|
ax-icn |
⊢ i ∈ ℂ |
10 |
9
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
11 |
1
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
13 |
10 12
|
mulcld |
⊢ ( 𝜑 → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
14 |
13
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) |
15 |
7 8 14
|
3eqtrd |
⊢ ( 𝜑 → 𝐴 = ( i · ( ℑ ‘ 𝐴 ) ) ) |
16 |
15
|
negeqd |
⊢ ( 𝜑 → - 𝐴 = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
17 |
5 6 16
|
3eqtr4d |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) = - 𝐴 ) |