| Step |
Hyp |
Ref |
Expression |
| 1 |
|
receqid.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
receqid.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 3 |
1
|
absred |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ↑ 2 ) ) ) |
| 4 |
|
sqrt1 |
⊢ ( √ ‘ 1 ) = 1 |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( √ ‘ 1 ) = 1 ) |
| 6 |
5
|
eqcomd |
⊢ ( 𝜑 → 1 = ( √ ‘ 1 ) ) |
| 7 |
3 6
|
eqeq12d |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) = 1 ↔ ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 1 ) ) ) |
| 8 |
1
|
resqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 9 |
1
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 10 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 11 |
|
0le1 |
⊢ 0 ≤ 1 |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 13 |
|
sqrt11 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 1 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) ) |
| 14 |
8 9 10 12 13
|
syl22anc |
⊢ ( 𝜑 → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 1 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) ) |
| 15 |
8
|
recnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 16 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 17 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 18 |
|
div11 |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( ( 𝐴 ↑ 2 ) / 𝐴 ) = ( 1 / 𝐴 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) ) |
| 19 |
15 16 17 2 18
|
syl112anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 𝐴 ) = ( 1 / 𝐴 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) ) |
| 20 |
|
sqdivid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) / 𝐴 ) = 𝐴 ) |
| 21 |
17 2 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 𝐴 ) = 𝐴 ) |
| 22 |
21
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 𝐴 ) = ( 1 / 𝐴 ) ↔ 𝐴 = ( 1 / 𝐴 ) ) ) |
| 23 |
14 19 22
|
3bitr2rd |
⊢ ( 𝜑 → ( 𝐴 = ( 1 / 𝐴 ) ↔ ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 1 ) ) ) |
| 24 |
|
eqcom |
⊢ ( 𝐴 = ( 1 / 𝐴 ) ↔ ( 1 / 𝐴 ) = 𝐴 ) |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ( 1 / 𝐴 ) ↔ ( 1 / 𝐴 ) = 𝐴 ) ) |
| 26 |
7 23 25
|
3bitr2rd |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) = 𝐴 ↔ ( abs ‘ 𝐴 ) = 1 ) ) |