Metamath Proof Explorer


Theorem div11

Description: One-to-one relationship for division. (Contributed by NM, 20-Apr-2006) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion div11 ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ( ๐ด / ๐ถ ) = ( ๐ต / ๐ถ ) โ†” ๐ด = ๐ต ) )

Proof

Step Hyp Ref Expression
1 simp1 โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ๐ด โˆˆ โ„‚ )
2 simp3l โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ๐ถ โˆˆ โ„‚ )
3 simp3r โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ๐ถ โ‰  0 )
4 divcl โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) โ†’ ( ๐ด / ๐ถ ) โˆˆ โ„‚ )
5 1 2 3 4 syl3anc โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ๐ด / ๐ถ ) โˆˆ โ„‚ )
6 simp2 โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ๐ต โˆˆ โ„‚ )
7 divcl โŠข ( ( ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) โ†’ ( ๐ต / ๐ถ ) โˆˆ โ„‚ )
8 6 2 3 7 syl3anc โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ๐ต / ๐ถ ) โˆˆ โ„‚ )
9 5 8 2 3 mulcand โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ( ๐ถ ยท ( ๐ด / ๐ถ ) ) = ( ๐ถ ยท ( ๐ต / ๐ถ ) ) โ†” ( ๐ด / ๐ถ ) = ( ๐ต / ๐ถ ) ) )
10 divcan2 โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) โ†’ ( ๐ถ ยท ( ๐ด / ๐ถ ) ) = ๐ด )
11 1 2 3 10 syl3anc โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ๐ถ ยท ( ๐ด / ๐ถ ) ) = ๐ด )
12 divcan2 โŠข ( ( ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) โ†’ ( ๐ถ ยท ( ๐ต / ๐ถ ) ) = ๐ต )
13 6 2 3 12 syl3anc โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ๐ถ ยท ( ๐ต / ๐ถ ) ) = ๐ต )
14 11 13 eqeq12d โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ( ๐ถ ยท ( ๐ด / ๐ถ ) ) = ( ๐ถ ยท ( ๐ต / ๐ถ ) ) โ†” ๐ด = ๐ต ) )
15 9 14 bitr3d โŠข ( ( ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ( ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0 ) ) โ†’ ( ( ๐ด / ๐ถ ) = ( ๐ต / ๐ถ ) โ†” ๐ด = ๐ต ) )