Metamath Proof Explorer


Theorem receqid

Description: Real numbers equal to their own reciprocal have absolute value 1 . (Contributed by Thierry Arnoux, 9-Nov-2025)

Ref Expression
Hypotheses receqid.1
|- ( ph -> A e. RR )
receqid.2
|- ( ph -> A =/= 0 )
Assertion receqid
|- ( ph -> ( ( 1 / A ) = A <-> ( abs ` A ) = 1 ) )

Proof

Step Hyp Ref Expression
1 receqid.1
 |-  ( ph -> A e. RR )
2 receqid.2
 |-  ( ph -> A =/= 0 )
3 1 absred
 |-  ( ph -> ( abs ` A ) = ( sqrt ` ( A ^ 2 ) ) )
4 sqrt1
 |-  ( sqrt ` 1 ) = 1
5 4 a1i
 |-  ( ph -> ( sqrt ` 1 ) = 1 )
6 5 eqcomd
 |-  ( ph -> 1 = ( sqrt ` 1 ) )
7 3 6 eqeq12d
 |-  ( ph -> ( ( abs ` A ) = 1 <-> ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 1 ) ) )
8 1 resqcld
 |-  ( ph -> ( A ^ 2 ) e. RR )
9 1 sqge0d
 |-  ( ph -> 0 <_ ( A ^ 2 ) )
10 1red
 |-  ( ph -> 1 e. RR )
11 0le1
 |-  0 <_ 1
12 11 a1i
 |-  ( ph -> 0 <_ 1 )
13 sqrt11
 |-  ( ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 1 ) <-> ( A ^ 2 ) = 1 ) )
14 8 9 10 12 13 syl22anc
 |-  ( ph -> ( ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 1 ) <-> ( A ^ 2 ) = 1 ) )
15 8 recnd
 |-  ( ph -> ( A ^ 2 ) e. CC )
16 1cnd
 |-  ( ph -> 1 e. CC )
17 1 recnd
 |-  ( ph -> A e. CC )
18 div11
 |-  ( ( ( A ^ 2 ) e. CC /\ 1 e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( ( A ^ 2 ) / A ) = ( 1 / A ) <-> ( A ^ 2 ) = 1 ) )
19 15 16 17 2 18 syl112anc
 |-  ( ph -> ( ( ( A ^ 2 ) / A ) = ( 1 / A ) <-> ( A ^ 2 ) = 1 ) )
20 sqdivid
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) / A ) = A )
21 17 2 20 syl2anc
 |-  ( ph -> ( ( A ^ 2 ) / A ) = A )
22 21 eqeq1d
 |-  ( ph -> ( ( ( A ^ 2 ) / A ) = ( 1 / A ) <-> A = ( 1 / A ) ) )
23 14 19 22 3bitr2rd
 |-  ( ph -> ( A = ( 1 / A ) <-> ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 1 ) ) )
24 eqcom
 |-  ( A = ( 1 / A ) <-> ( 1 / A ) = A )
25 24 a1i
 |-  ( ph -> ( A = ( 1 / A ) <-> ( 1 / A ) = A ) )
26 7 23 25 3bitr2rd
 |-  ( ph -> ( ( 1 / A ) = A <-> ( abs ` A ) = 1 ) )