| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagreim.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
pythagreim.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
cjreim2 |
|- ( ( B e. RR /\ A e. RR ) -> ( * ` ( B - ( _i x. A ) ) ) = ( B + ( _i x. A ) ) ) |
| 4 |
2 1 3
|
syl2anc |
|- ( ph -> ( * ` ( B - ( _i x. A ) ) ) = ( B + ( _i x. A ) ) ) |
| 5 |
4
|
oveq2d |
|- ( ph -> ( ( B - ( _i x. A ) ) x. ( * ` ( B - ( _i x. A ) ) ) ) = ( ( B - ( _i x. A ) ) x. ( B + ( _i x. A ) ) ) ) |
| 6 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
7
|
a1i |
|- ( ph -> _i e. CC ) |
| 9 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 10 |
8 9
|
mulcld |
|- ( ph -> ( _i x. A ) e. CC ) |
| 11 |
6 10
|
subcld |
|- ( ph -> ( B - ( _i x. A ) ) e. CC ) |
| 12 |
6 10
|
addcld |
|- ( ph -> ( B + ( _i x. A ) ) e. CC ) |
| 13 |
11 12
|
mulcomd |
|- ( ph -> ( ( B - ( _i x. A ) ) x. ( B + ( _i x. A ) ) ) = ( ( B + ( _i x. A ) ) x. ( B - ( _i x. A ) ) ) ) |
| 14 |
5 13
|
eqtrd |
|- ( ph -> ( ( B - ( _i x. A ) ) x. ( * ` ( B - ( _i x. A ) ) ) ) = ( ( B + ( _i x. A ) ) x. ( B - ( _i x. A ) ) ) ) |
| 15 |
11
|
absvalsqd |
|- ( ph -> ( ( abs ` ( B - ( _i x. A ) ) ) ^ 2 ) = ( ( B - ( _i x. A ) ) x. ( * ` ( B - ( _i x. A ) ) ) ) ) |
| 16 |
8 9
|
sqmuld |
|- ( ph -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 17 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 18 |
17
|
oveq1i |
|- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
| 19 |
16 18
|
eqtrdi |
|- ( ph -> ( ( _i x. A ) ^ 2 ) = ( -u 1 x. ( A ^ 2 ) ) ) |
| 20 |
9
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
| 21 |
20
|
mulm1d |
|- ( ph -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ph -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
| 23 |
22
|
oveq2d |
|- ( ph -> ( ( B ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( B ^ 2 ) - -u ( A ^ 2 ) ) ) |
| 24 |
6
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
| 25 |
24 20
|
subnegd |
|- ( ph -> ( ( B ^ 2 ) - -u ( A ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 26 |
24 20
|
addcomd |
|- ( ph -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 27 |
23 25 26
|
3eqtrd |
|- ( ph -> ( ( B ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 28 |
|
subsq |
|- ( ( B e. CC /\ ( _i x. A ) e. CC ) -> ( ( B ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( B + ( _i x. A ) ) x. ( B - ( _i x. A ) ) ) ) |
| 29 |
6 10 28
|
syl2anc |
|- ( ph -> ( ( B ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( B + ( _i x. A ) ) x. ( B - ( _i x. A ) ) ) ) |
| 30 |
27 29
|
eqtr3d |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B + ( _i x. A ) ) x. ( B - ( _i x. A ) ) ) ) |
| 31 |
14 15 30
|
3eqtr4d |
|- ( ph -> ( ( abs ` ( B - ( _i x. A ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |