| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagreim.1 |
|
| 2 |
|
pythagreim.2 |
|
| 3 |
|
cjreim2 |
|
| 4 |
2 1 3
|
syl2anc |
|
| 5 |
4
|
oveq2d |
|
| 6 |
2
|
recnd |
|
| 7 |
|
ax-icn |
|
| 8 |
7
|
a1i |
|
| 9 |
1
|
recnd |
|
| 10 |
8 9
|
mulcld |
|
| 11 |
6 10
|
subcld |
|
| 12 |
6 10
|
addcld |
|
| 13 |
11 12
|
mulcomd |
|
| 14 |
5 13
|
eqtrd |
|
| 15 |
11
|
absvalsqd |
|
| 16 |
8 9
|
sqmuld |
|
| 17 |
|
i2 |
|
| 18 |
17
|
oveq1i |
|
| 19 |
16 18
|
eqtrdi |
|
| 20 |
9
|
sqcld |
|
| 21 |
20
|
mulm1d |
|
| 22 |
19 21
|
eqtrd |
|
| 23 |
22
|
oveq2d |
|
| 24 |
6
|
sqcld |
|
| 25 |
24 20
|
subnegd |
|
| 26 |
24 20
|
addcomd |
|
| 27 |
23 25 26
|
3eqtrd |
|
| 28 |
|
subsq |
|
| 29 |
6 10 28
|
syl2anc |
|
| 30 |
27 29
|
eqtr3d |
|
| 31 |
14 15 30
|
3eqtr4d |
|