Metamath Proof Explorer


Theorem efiargd

Description: The exponential of the "arg" function Im o. log , deduction version. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses efiargd.1
|- ( ph -> A e. CC )
efiargd.2
|- ( ph -> A =/= 0 )
Assertion efiargd
|- ( ph -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) )

Proof

Step Hyp Ref Expression
1 efiargd.1
 |-  ( ph -> A e. CC )
2 efiargd.2
 |-  ( ph -> A =/= 0 )
3 efiarg
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) )