| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efiargd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
efiargd.2 |
|- ( ph -> A =/= 0 ) |
| 3 |
|
arginv.1 |
|- ( ph -> -. -u A e. RR+ ) |
| 4 |
1 2
|
logcld |
|- ( ph -> ( log ` A ) e. CC ) |
| 5 |
1 2
|
reccld |
|- ( ph -> ( 1 / A ) e. CC ) |
| 6 |
1 2
|
recne0d |
|- ( ph -> ( 1 / A ) =/= 0 ) |
| 7 |
5 6
|
logcld |
|- ( ph -> ( log ` ( 1 / A ) ) e. CC ) |
| 8 |
|
lognegb |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) |
| 9 |
8
|
necon3bbid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -. -u A e. RR+ <-> ( Im ` ( log ` A ) ) =/= _pi ) ) |
| 10 |
9
|
biimpa |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ -. -u A e. RR+ ) -> ( Im ` ( log ` A ) ) =/= _pi ) |
| 11 |
1 2 3 10
|
syl21anc |
|- ( ph -> ( Im ` ( log ` A ) ) =/= _pi ) |
| 12 |
|
logrec |
|- ( ( A e. CC /\ A =/= 0 /\ ( Im ` ( log ` A ) ) =/= _pi ) -> ( log ` A ) = -u ( log ` ( 1 / A ) ) ) |
| 13 |
1 2 11 12
|
syl3anc |
|- ( ph -> ( log ` A ) = -u ( log ` ( 1 / A ) ) ) |
| 14 |
|
negcon2 |
|- ( ( ( log ` A ) e. CC /\ ( log ` ( 1 / A ) ) e. CC ) -> ( ( log ` A ) = -u ( log ` ( 1 / A ) ) <-> ( log ` ( 1 / A ) ) = -u ( log ` A ) ) ) |
| 15 |
14
|
biimpa |
|- ( ( ( ( log ` A ) e. CC /\ ( log ` ( 1 / A ) ) e. CC ) /\ ( log ` A ) = -u ( log ` ( 1 / A ) ) ) -> ( log ` ( 1 / A ) ) = -u ( log ` A ) ) |
| 16 |
4 7 13 15
|
syl21anc |
|- ( ph -> ( log ` ( 1 / A ) ) = -u ( log ` A ) ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( Im ` ( log ` ( 1 / A ) ) ) = ( Im ` -u ( log ` A ) ) ) |
| 18 |
4
|
imnegd |
|- ( ph -> ( Im ` -u ( log ` A ) ) = -u ( Im ` ( log ` A ) ) ) |
| 19 |
17 18
|
eqtrd |
|- ( ph -> ( Im ` ( log ` ( 1 / A ) ) ) = -u ( Im ` ( log ` A ) ) ) |