Metamath Proof Explorer


Theorem arginv

Description: The argument of the inverse of a complex number A . (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses efiargd.1 φ A
efiargd.2 φ A 0
arginv.1 φ ¬ A +
Assertion arginv φ log 1 A = log A

Proof

Step Hyp Ref Expression
1 efiargd.1 φ A
2 efiargd.2 φ A 0
3 arginv.1 φ ¬ A +
4 1 2 logcld φ log A
5 1 2 reccld φ 1 A
6 1 2 recne0d φ 1 A 0
7 5 6 logcld φ log 1 A
8 lognegb A A 0 A + log A = π
9 8 necon3bbid A A 0 ¬ A + log A π
10 9 biimpa A A 0 ¬ A + log A π
11 1 2 3 10 syl21anc φ log A π
12 logrec A A 0 log A π log A = log 1 A
13 1 2 11 12 syl3anc φ log A = log 1 A
14 negcon2 log A log 1 A log A = log 1 A log 1 A = log A
15 14 biimpa log A log 1 A log A = log 1 A log 1 A = log A
16 4 7 13 15 syl21anc φ log 1 A = log A
17 16 fveq2d φ log 1 A = log A
18 4 imnegd φ log A = log A
19 17 18 eqtrd φ log 1 A = log A