| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reccl |
|
| 2 |
|
recne0 |
|
| 3 |
|
eflog |
|
| 4 |
1 2 3
|
syl2anc |
|
| 5 |
4
|
eqcomd |
|
| 6 |
5
|
oveq2d |
|
| 7 |
|
eflog |
|
| 8 |
|
recrec |
|
| 9 |
7 8
|
eqtr4d |
|
| 10 |
1 2
|
logcld |
|
| 11 |
|
efneg |
|
| 12 |
10 11
|
syl |
|
| 13 |
6 9 12
|
3eqtr4d |
|
| 14 |
13
|
3adant3 |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
logrncl |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
logef |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
df-ne |
|
| 21 |
|
lognegb |
|
| 22 |
1 2 21
|
syl2anc |
|
| 23 |
22
|
biimprd |
|
| 24 |
|
ax-1cn |
|
| 25 |
|
divneg2 |
|
| 26 |
24 25
|
mp3an1 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
23 27
|
sylibd |
|
| 29 |
|
negcl |
|
| 30 |
|
negeq0 |
|
| 31 |
30
|
necon3bid |
|
| 32 |
31
|
biimpa |
|
| 33 |
|
rpreccl |
|
| 34 |
|
recrec |
|
| 35 |
34
|
eleq1d |
|
| 36 |
33 35
|
imbitrid |
|
| 37 |
29 32 36
|
syl2an2r |
|
| 38 |
28 37
|
syld |
|
| 39 |
|
lognegb |
|
| 40 |
38 39
|
sylibd |
|
| 41 |
40
|
con3d |
|
| 42 |
41
|
3impia |
|
| 43 |
20 42
|
syl3an3b |
|
| 44 |
|
logrncl |
|
| 45 |
1 2 44
|
syl2anc |
|
| 46 |
|
logreclem |
|
| 47 |
45 46
|
stoic3 |
|
| 48 |
43 47
|
syld3an3 |
|
| 49 |
|
logef |
|
| 50 |
48 49
|
syl |
|
| 51 |
15 19 50
|
3eqtr3d |
|