Step |
Hyp |
Ref |
Expression |
1 |
|
reccl |
|
2 |
|
recne0 |
|
3 |
|
eflog |
|
4 |
1 2 3
|
syl2anc |
|
5 |
4
|
eqcomd |
|
6 |
5
|
oveq2d |
|
7 |
|
eflog |
|
8 |
|
recrec |
|
9 |
7 8
|
eqtr4d |
|
10 |
1 2
|
logcld |
|
11 |
|
efneg |
|
12 |
10 11
|
syl |
|
13 |
6 9 12
|
3eqtr4d |
|
14 |
13
|
3adant3 |
|
15 |
14
|
fveq2d |
|
16 |
|
logrncl |
|
17 |
16
|
3adant3 |
|
18 |
|
logef |
|
19 |
17 18
|
syl |
|
20 |
|
df-ne |
|
21 |
|
lognegb |
|
22 |
1 2 21
|
syl2anc |
|
23 |
22
|
biimprd |
|
24 |
|
ax-1cn |
|
25 |
|
divneg2 |
|
26 |
24 25
|
mp3an1 |
|
27 |
26
|
eleq1d |
|
28 |
23 27
|
sylibd |
|
29 |
|
negcl |
|
30 |
|
negeq0 |
|
31 |
30
|
necon3bid |
|
32 |
31
|
biimpa |
|
33 |
|
rpreccl |
|
34 |
|
recrec |
|
35 |
34
|
eleq1d |
|
36 |
33 35
|
syl5ib |
|
37 |
29 32 36
|
syl2an2r |
|
38 |
28 37
|
syld |
|
39 |
|
lognegb |
|
40 |
38 39
|
sylibd |
|
41 |
40
|
con3d |
|
42 |
41
|
3impia |
|
43 |
20 42
|
syl3an3b |
|
44 |
|
logrncl |
|
45 |
1 2 44
|
syl2anc |
|
46 |
|
logreclem |
|
47 |
45 46
|
stoic3 |
|
48 |
43 47
|
syld3an3 |
|
49 |
|
logef |
|
50 |
48 49
|
syl |
|
51 |
15 19 50
|
3eqtr3d |
|