Metamath Proof Explorer


Theorem logrec

Description: Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016)

Ref Expression
Assertion logrec AA0logAπlogA=log1A

Proof

Step Hyp Ref Expression
1 reccl AA01A
2 recne0 AA01A0
3 eflog 1A1A0elog1A=1A
4 1 2 3 syl2anc AA0elog1A=1A
5 4 eqcomd AA01A=elog1A
6 5 oveq2d AA011A=1elog1A
7 eflog AA0elogA=A
8 recrec AA011A=A
9 7 8 eqtr4d AA0elogA=11A
10 1 2 logcld AA0log1A
11 efneg log1Aelog1A=1elog1A
12 10 11 syl AA0elog1A=1elog1A
13 6 9 12 3eqtr4d AA0elogA=elog1A
14 13 3adant3 AA0logAπelogA=elog1A
15 14 fveq2d AA0logAπlogelogA=logelog1A
16 logrncl AA0logAranlog
17 16 3adant3 AA0logAπlogAranlog
18 logef logAranloglogelogA=logA
19 17 18 syl AA0logAπlogelogA=logA
20 df-ne logAπ¬logA=π
21 lognegb 1A1A01A+log1A=π
22 1 2 21 syl2anc AA01A+log1A=π
23 22 biimprd AA0log1A=π1A+
24 ax-1cn 1
25 divneg2 1AA01A=1A
26 24 25 mp3an1 AA01A=1A
27 26 eleq1d AA01A+1A+
28 23 27 sylibd AA0log1A=π1A+
29 negcl AA
30 negeq0 AA=0A=0
31 30 necon3bid AA0A0
32 31 biimpa AA0A0
33 rpreccl 1A+11A+
34 recrec AA011A=A
35 34 eleq1d AA011A+A+
36 33 35 imbitrid AA01A+A+
37 29 32 36 syl2an2r AA01A+A+
38 28 37 syld AA0log1A=πA+
39 lognegb AA0A+logA=π
40 38 39 sylibd AA0log1A=πlogA=π
41 40 con3d AA0¬logA=π¬log1A=π
42 41 3impia AA0¬logA=π¬log1A=π
43 20 42 syl3an3b AA0logAπ¬log1A=π
44 logrncl 1A1A0log1Aranlog
45 1 2 44 syl2anc AA0log1Aranlog
46 logreclem log1Aranlog¬log1A=πlog1Aranlog
47 45 46 stoic3 AA0¬log1A=πlog1Aranlog
48 43 47 syld3an3 AA0logAπlog1Aranlog
49 logef log1Aranloglogelog1A=log1A
50 48 49 syl AA0logAπlogelog1A=log1A
51 15 19 50 3eqtr3d AA0logAπlogA=log1A