Metamath Proof Explorer


Theorem logreclem

Description: Symmetry of the natural logarithm range by negation. Lemma for logrec . (Contributed by Saveliy Skresanov, 27-Dec-2016)

Ref Expression
Assertion logreclem Aranlog¬A=πAranlog

Proof

Step Hyp Ref Expression
1 logrncn AranlogA
2 1 adantr Aranlog¬π=AA
3 2 negcld Aranlog¬π=AA
4 ellogrn AranlogAπ<AAπ
5 4 biimpi AranlogAπ<AAπ
6 5 simp3d AranlogAπ
7 imcl AA
8 pire π
9 leneg AπAππA
10 9 biimpd AπAππA
11 7 8 10 sylancl AAππA
12 1 6 11 sylc AranlogπA
13 8 renegcli π
14 13 a1i Aπ
15 7 renegcld AA
16 14 15 leloed AπAπ<Aπ=A
17 16 biimpd AπAπ<Aπ=A
18 1 12 17 sylc Aranlogπ<Aπ=A
19 18 orcomd Aranlogπ=Aπ<A
20 19 orcanai Aranlog¬π=Aπ<A
21 5 simp2d Aranlogπ<A
22 ltnegcon1 πAπ<AA<π
23 22 biimpd πAπ<AA<π
24 8 7 23 sylancr Aπ<AA<π
25 1 21 24 sylc AranlogA<π
26 25 adantr Aranlog¬π=AA<π
27 ltle AπA<πAπ
28 15 8 27 sylancl AA<πAπ
29 1 28 syl AranlogA<πAπ
30 29 adantr Aranlog¬π=AA<πAπ
31 26 30 mpd Aranlog¬π=AAπ
32 imneg AA=A
33 32 breq2d Aπ<Aπ<A
34 2 33 syl Aranlog¬π=Aπ<Aπ<A
35 32 breq1d AAπAπ
36 2 35 syl Aranlog¬π=AAπAπ
37 34 36 anbi12d Aranlog¬π=Aπ<AAππ<AAπ
38 20 31 37 mpbir2and Aranlog¬π=Aπ<AAπ
39 3anass Aπ<AAπAπ<AAπ
40 3 38 39 sylanbrc Aranlog¬π=AAπ<AAπ
41 ellogrn AranlogAπ<AAπ
42 40 41 sylibr Aranlog¬π=AAranlog
43 42 ex Aranlog¬π=AAranlog
44 43 orrd Aranlogπ=AAranlog
45 recn ππ
46 recn AA
47 45 46 anim12i πAπA
48 8 7 47 sylancr AπA
49 1 48 syl AranlogπA
50 neg11 πAπ=Aπ=A
51 eqcom π=AA=π
52 50 51 bitrdi πAπ=AA=π
53 49 52 syl Aranlogπ=AA=π
54 53 orbi1d Aranlogπ=AAranlogA=πAranlog
55 44 54 mpbid AranlogA=πAranlog
56 55 orcanai Aranlog¬A=πAranlog