Metamath Proof Explorer


Theorem logreclem

Description: Symmetry of the natural logarithm range by negation. Lemma for logrec . (Contributed by Saveliy Skresanov, 27-Dec-2016)

Ref Expression
Assertion logreclem A ran log ¬ A = π A ran log

Proof

Step Hyp Ref Expression
1 logrncn A ran log A
2 1 adantr A ran log ¬ π = A A
3 2 negcld A ran log ¬ π = A A
4 ellogrn A ran log A π < A A π
5 4 biimpi A ran log A π < A A π
6 5 simp3d A ran log A π
7 imcl A A
8 pire π
9 leneg A π A π π A
10 9 biimpd A π A π π A
11 7 8 10 sylancl A A π π A
12 1 6 11 sylc A ran log π A
13 8 renegcli π
14 13 a1i A π
15 7 renegcld A A
16 14 15 leloed A π A π < A π = A
17 16 biimpd A π A π < A π = A
18 1 12 17 sylc A ran log π < A π = A
19 18 orcomd A ran log π = A π < A
20 19 orcanai A ran log ¬ π = A π < A
21 5 simp2d A ran log π < A
22 ltnegcon1 π A π < A A < π
23 22 biimpd π A π < A A < π
24 8 7 23 sylancr A π < A A < π
25 1 21 24 sylc A ran log A < π
26 25 adantr A ran log ¬ π = A A < π
27 ltle A π A < π A π
28 15 8 27 sylancl A A < π A π
29 1 28 syl A ran log A < π A π
30 29 adantr A ran log ¬ π = A A < π A π
31 26 30 mpd A ran log ¬ π = A A π
32 imneg A A = A
33 32 breq2d A π < A π < A
34 2 33 syl A ran log ¬ π = A π < A π < A
35 32 breq1d A A π A π
36 2 35 syl A ran log ¬ π = A A π A π
37 34 36 anbi12d A ran log ¬ π = A π < A A π π < A A π
38 20 31 37 mpbir2and A ran log ¬ π = A π < A A π
39 3anass A π < A A π A π < A A π
40 3 38 39 sylanbrc A ran log ¬ π = A A π < A A π
41 ellogrn A ran log A π < A A π
42 40 41 sylibr A ran log ¬ π = A A ran log
43 42 ex A ran log ¬ π = A A ran log
44 43 orrd A ran log π = A A ran log
45 recn π π
46 recn A A
47 45 46 anim12i π A π A
48 8 7 47 sylancr A π A
49 1 48 syl A ran log π A
50 neg11 π A π = A π = A
51 eqcom π = A A = π
52 50 51 bitrdi π A π = A A = π
53 49 52 syl A ran log π = A A = π
54 53 orbi1d A ran log π = A A ran log A = π A ran log
55 44 54 mpbid A ran log A = π A ran log
56 55 orcanai A ran log ¬ A = π A ran log