Description: Symmetry of the natural logarithm range by negation. Lemma for logrec . (Contributed by Saveliy Skresanov, 27-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | logreclem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logrncn | |
|
2 | 1 | adantr | |
3 | 2 | negcld | |
4 | ellogrn | |
|
5 | 4 | biimpi | |
6 | 5 | simp3d | |
7 | imcl | |
|
8 | pire | |
|
9 | leneg | |
|
10 | 9 | biimpd | |
11 | 7 8 10 | sylancl | |
12 | 1 6 11 | sylc | |
13 | 8 | renegcli | |
14 | 13 | a1i | |
15 | 7 | renegcld | |
16 | 14 15 | leloed | |
17 | 16 | biimpd | |
18 | 1 12 17 | sylc | |
19 | 18 | orcomd | |
20 | 19 | orcanai | |
21 | 5 | simp2d | |
22 | ltnegcon1 | |
|
23 | 22 | biimpd | |
24 | 8 7 23 | sylancr | |
25 | 1 21 24 | sylc | |
26 | 25 | adantr | |
27 | ltle | |
|
28 | 15 8 27 | sylancl | |
29 | 1 28 | syl | |
30 | 29 | adantr | |
31 | 26 30 | mpd | |
32 | imneg | |
|
33 | 32 | breq2d | |
34 | 2 33 | syl | |
35 | 32 | breq1d | |
36 | 2 35 | syl | |
37 | 34 36 | anbi12d | |
38 | 20 31 37 | mpbir2and | |
39 | 3anass | |
|
40 | 3 38 39 | sylanbrc | |
41 | ellogrn | |
|
42 | 40 41 | sylibr | |
43 | 42 | ex | |
44 | 43 | orrd | |
45 | recn | |
|
46 | recn | |
|
47 | 45 46 | anim12i | |
48 | 8 7 47 | sylancr | |
49 | 1 48 | syl | |
50 | neg11 | |
|
51 | eqcom | |
|
52 | 50 51 | bitrdi | |
53 | 49 52 | syl | |
54 | 53 | orbi1d | |
55 | 44 54 | mpbid | |
56 | 55 | orcanai | |