| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efiargd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
efiargd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 3 |
|
arginv.1 |
⊢ ( 𝜑 → ¬ - 𝐴 ∈ ℝ+ ) |
| 4 |
1 2
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 5 |
1 2
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |
| 6 |
1 2
|
recne0d |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ≠ 0 ) |
| 7 |
5 6
|
logcld |
⊢ ( 𝜑 → ( log ‘ ( 1 / 𝐴 ) ) ∈ ℂ ) |
| 8 |
|
lognegb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
| 9 |
8
|
necon3bbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ¬ - 𝐴 ∈ ℝ+ ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) |
| 11 |
1 2 3 10
|
syl21anc |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) |
| 12 |
|
logrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) → ( log ‘ 𝐴 ) = - ( log ‘ ( 1 / 𝐴 ) ) ) |
| 13 |
1 2 11 12
|
syl3anc |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) = - ( log ‘ ( 1 / 𝐴 ) ) ) |
| 14 |
|
negcon2 |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ ( 1 / 𝐴 ) ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) = - ( log ‘ ( 1 / 𝐴 ) ) ↔ ( log ‘ ( 1 / 𝐴 ) ) = - ( log ‘ 𝐴 ) ) ) |
| 15 |
14
|
biimpa |
⊢ ( ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ ( 1 / 𝐴 ) ) ∈ ℂ ) ∧ ( log ‘ 𝐴 ) = - ( log ‘ ( 1 / 𝐴 ) ) ) → ( log ‘ ( 1 / 𝐴 ) ) = - ( log ‘ 𝐴 ) ) |
| 16 |
4 7 13 15
|
syl21anc |
⊢ ( 𝜑 → ( log ‘ ( 1 / 𝐴 ) ) = - ( log ‘ 𝐴 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 1 / 𝐴 ) ) ) = ( ℑ ‘ - ( log ‘ 𝐴 ) ) ) |
| 18 |
4
|
imnegd |
⊢ ( 𝜑 → ( ℑ ‘ - ( log ‘ 𝐴 ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 19 |
17 18
|
eqtrd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( 1 / 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |