| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efiargd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
efiargd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 3 |
|
arginv.1 |
⊢ ( 𝜑 → ¬ - 𝐴 ∈ ℝ+ ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ≠ 0 ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ¬ - 𝐴 ∈ ℝ+ ) |
| 7 |
|
rpneg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ ℝ+ ↔ ¬ - 𝐴 ∈ ℝ+ ) ) |
| 8 |
7
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ ¬ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) |
| 9 |
4 5 6 8
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ+ ) |
| 10 |
9
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
10
|
reim0d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) = 0 ) |
| 12 |
4
|
cjred |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
| 13 |
12
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 15 |
11
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) = - 0 ) |
| 16 |
|
neg0 |
⊢ - 0 = 0 |
| 17 |
15 16
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) = 0 ) |
| 18 |
11 14 17
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℂ ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ 𝐴 ) = 0 ) |
| 21 |
19 20
|
reim0bd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
| 22 |
21
|
ex |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ ) ) |
| 23 |
22
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) ≠ 0 ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 25 |
|
logcj |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ) |
| 26 |
1 24 25
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 ≠ 0 ) |
| 30 |
28 29
|
logcld |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 31 |
30
|
imcjd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 32 |
27 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 33 |
18 32
|
pm2.61dan |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |