Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) |
2 |
|
im0 |
⊢ ( ℑ ‘ 0 ) = 0 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
4 |
3
|
necon3i |
⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
5 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
efcj |
⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
9 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
10 |
4 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) |
12 |
8 11
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) |
13 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
15 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
16 |
15 4
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ≠ 0 ) |
17 |
|
cjne0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) |
19 |
16 18
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ≠ 0 ) |
20 |
6
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
21 |
6
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
22 |
|
pire |
⊢ π ∈ ℝ |
23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → π ∈ ℝ ) |
24 |
|
logimcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
25 |
4 24
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
26 |
25
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
27 |
|
rpre |
⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) |
28 |
27
|
renegcld |
⊢ ( - 𝐴 ∈ ℝ+ → - - 𝐴 ∈ ℝ ) |
29 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - - 𝐴 = 𝐴 ) |
31 |
30
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
32 |
28 31
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) ) |
33 |
|
lognegb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
34 |
4 33
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
35 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
37 |
32 34 36
|
3imtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( ℑ ‘ 𝐴 ) = 0 ) ) |
38 |
37
|
necon3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ 𝐴 ) ≠ 0 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) ) |
39 |
15 38
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) |
40 |
39
|
necomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → π ≠ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
41 |
21 23 26 40
|
leneltd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
42 |
|
ltneg |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
43 |
21 22 42
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
44 |
41 43
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
45 |
6
|
imcjd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
46 |
44 45
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π < ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ) |
47 |
25
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
48 |
22
|
renegcli |
⊢ - π ∈ ℝ |
49 |
|
ltle |
⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
50 |
48 21 49
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
51 |
47 50
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
52 |
|
lenegcon1 |
⊢ ( ( π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
53 |
22 21 52
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
54 |
51 53
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
55 |
45 54
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
56 |
|
ellogrn |
⊢ ( ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ran log ↔ ( ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
57 |
20 46 55 56
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ran log ) |
58 |
|
logeftb |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ≠ 0 ∧ ( ∗ ‘ ( log ‘ 𝐴 ) ) ∈ ran log ) → ( ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) ) |
59 |
14 19 57 58
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = ( ∗ ‘ 𝐴 ) ) ) |
60 |
12 59
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ) |