Metamath Proof Explorer


Theorem efiarg

Description: The exponential of the "arg" function Im o. log . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion efiarg ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 logcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ )
2 1 recld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ )
3 2 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ )
4 efsub ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) )
5 1 3 4 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) )
6 ax-icn i ∈ ℂ
7 1 imcld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ )
8 7 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ )
9 mulcl ( ( i ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ )
10 6 8 9 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ )
11 1 replimd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) = ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
12 3 10 11 mvrladdd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
13 12 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
14 eflog ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 )
15 relog ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) )
16 15 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) )
17 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
18 17 adantr ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ )
19 18 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ )
20 absrpcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ )
21 20 rpne0d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 )
22 eflog ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) )
23 19 21 22 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) )
24 16 23 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) )
25 14 24 oveq12d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )
26 5 13 25 3eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )