Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
2 |
1
|
recld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
3 |
2
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. CC ) |
4 |
|
efsub |
|- ( ( ( log ` A ) e. CC /\ ( Re ` ( log ` A ) ) e. CC ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
5 |
1 3 4
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
6 |
|
ax-icn |
|- _i e. CC |
7 |
1
|
imcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
8 |
7
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
9 |
|
mulcl |
|- ( ( _i e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
10 |
6 8 9
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
11 |
1
|
replimd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) = ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
12 |
3 10 11
|
mvrladdd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( log ` A ) - ( Re ` ( log ` A ) ) ) = ( _i x. ( Im ` ( log ` A ) ) ) ) |
13 |
12
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
14 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
15 |
|
relog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
16 |
15
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( exp ` ( log ` ( abs ` A ) ) ) ) |
17 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
18 |
17
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
19 |
18
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
20 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
21 |
20
|
rpne0d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
22 |
|
eflog |
|- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) -> ( exp ` ( log ` ( abs ` A ) ) ) = ( abs ` A ) ) |
23 |
19 21 22
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` ( abs ` A ) ) ) = ( abs ` A ) ) |
24 |
16 23
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( abs ` A ) ) |
25 |
14 24
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |
26 |
5 13 25
|
3eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |