Metamath Proof Explorer


Theorem efiarg

Description: The exponential of the "arg" function Im o. log . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion efiarg AA0eilogA=AA

Proof

Step Hyp Ref Expression
1 logcl AA0logA
2 1 recld AA0logA
3 2 recnd AA0logA
4 efsub logAlogAelogAlogA=elogAelogA
5 1 3 4 syl2anc AA0elogAlogA=elogAelogA
6 ax-icn i
7 1 imcld AA0logA
8 7 recnd AA0logA
9 mulcl ilogAilogA
10 6 8 9 sylancr AA0ilogA
11 1 replimd AA0logA=logA+ilogA
12 3 10 11 mvrladdd AA0logAlogA=ilogA
13 12 fveq2d AA0elogAlogA=eilogA
14 eflog AA0elogA=A
15 relog AA0logA=logA
16 15 fveq2d AA0elogA=elogA
17 abscl AA
18 17 adantr AA0A
19 18 recnd AA0A
20 absrpcl AA0A+
21 20 rpne0d AA0A0
22 eflog AA0elogA=A
23 19 21 22 syl2anc AA0elogA=A
24 16 23 eqtrd AA0elogA=A
25 14 24 oveq12d AA0elogAelogA=AA
26 5 13 25 3eqtr3d AA0eilogA=AA