Metamath Proof Explorer


Theorem mvrladdd

Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvrraddd.1 φB
mvrraddd.2 φC
mvrraddd.3 φA=B+C
Assertion mvrladdd φAB=C

Proof

Step Hyp Ref Expression
1 mvrraddd.1 φB
2 mvrraddd.2 φC
3 mvrraddd.3 φA=B+C
4 1 2 3 comraddd φA=C+B
5 2 1 4 mvrraddd φAB=C