Metamath Proof Explorer


Theorem assraddsubd

Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018)

Ref Expression
Hypotheses assraddsubd.1 φB
assraddsubd.2 φC
assraddsubd.3 φD
assraddsubd.4 φA=B+C-D
Assertion assraddsubd φA=B+C-D

Proof

Step Hyp Ref Expression
1 assraddsubd.1 φB
2 assraddsubd.2 φC
3 assraddsubd.3 φD
4 assraddsubd.4 φA=B+C-D
5 1 2 3 addsubassd φB+C-D=B+C-D
6 4 5 eqtrd φA=B+C-D