Metamath Proof Explorer


Theorem efsub

Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion efsub ABeAB=eAeB

Proof

Step Hyp Ref Expression
1 efcl AeA
2 efcl BeB
3 efne0 BeB0
4 divrec eAeBeB0eAeB=eA1eB
5 1 2 3 4 syl3an ABBeAeB=eA1eB
6 5 3anidm23 ABeAeB=eA1eB
7 efcan BeBeB=1
8 7 eqcomd B1=eBeB
9 negcl BB
10 efcl BeB
11 9 10 syl BeB
12 ax-1cn 1
13 divmul2 1eBeBeB01eB=eB1=eBeB
14 12 13 mp3an1 eBeBeB01eB=eB1=eBeB
15 11 2 3 14 syl12anc B1eB=eB1=eBeB
16 8 15 mpbird B1eB=eB
17 16 oveq2d BeA1eB=eAeB
18 17 adantl ABeA1eB=eAeB
19 efadd ABeA+B=eAeB
20 9 19 sylan2 ABeA+B=eAeB
21 18 20 eqtr4d ABeA1eB=eA+B
22 negsub ABA+B=AB
23 22 fveq2d ABeA+B=eAB
24 6 21 23 3eqtrrd ABeAB=eAeB