| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 2 |
|
dflog2 |
⊢ log = ◡ ( exp ↾ ran log ) |
| 3 |
2
|
fveq1i |
⊢ ( log ‘ 𝐴 ) = ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) |
| 4 |
3
|
eqeq1i |
⊢ ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) |
| 5 |
|
fvres |
⊢ ( 𝐵 ∈ ran log → ( ( exp ↾ ran log ) ‘ 𝐵 ) = ( exp ‘ 𝐵 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝐵 ∈ ran log → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 8 |
|
eff1o2 |
⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) |
| 9 |
|
f1ocnvfvb |
⊢ ( ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
| 10 |
8 9
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
| 11 |
7 10
|
bitr3d |
⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
| 12 |
11
|
ancoms |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ) → ( ( exp ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
| 13 |
4 12
|
bitr4id |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 14 |
1 13
|
sylanbr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
| 15 |
14
|
3impa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |