Metamath Proof Explorer


Theorem argcj

Description: The argument of the conjugate of a complex number A . (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses efiargd.1 φ A
efiargd.2 φ A 0
arginv.1 φ ¬ A +
Assertion argcj φ log A = log A

Proof

Step Hyp Ref Expression
1 efiargd.1 φ A
2 efiargd.2 φ A 0
3 arginv.1 φ ¬ A +
4 simpr φ A A
5 2 adantr φ A A 0
6 3 adantr φ A ¬ A +
7 rpneg A A 0 A + ¬ A +
8 7 biimpar A A 0 ¬ A + A +
9 4 5 6 8 syl21anc φ A A +
10 9 relogcld φ A log A
11 10 reim0d φ A log A = 0
12 4 cjred φ A A = A
13 12 fveq2d φ A log A = log A
14 13 fveq2d φ A log A = log A
15 11 negeqd φ A log A = 0
16 neg0 0 = 0
17 15 16 eqtrdi φ A log A = 0
18 11 14 17 3eqtr4d φ A log A = log A
19 1 adantr φ A = 0 A
20 simpr φ A = 0 A = 0
21 19 20 reim0bd φ A = 0 A
22 21 ex φ A = 0 A
23 22 necon3bd φ ¬ A A 0
24 23 imp φ ¬ A A 0
25 logcj A A 0 log A = log A
26 1 24 25 syl2an2r φ ¬ A log A = log A
27 26 fveq2d φ ¬ A log A = log A
28 1 adantr φ ¬ A A
29 2 adantr φ ¬ A A 0
30 28 29 logcld φ ¬ A log A
31 30 imcjd φ ¬ A log A = log A
32 27 31 eqtrd φ ¬ A log A = log A
33 18 32 pm2.61dan φ log A = log A